Learning by Bootstrapping

Anoop Sarkar
School of Computing Science
Simon Fraser University
http://natlang.cs.sfu.ca

Acknowledgements

• This is joint work with my students Gholamreza Haffari (Ph.D.) and Max Whitney (B.Sc.) at SFU.
• Thanks to Michael Collins for providing the named-entity dataset and answering our questions.
• Thanks to Damianos Karakos and Jason Eisner for providing the word sense dataset and answering our questions.
Supervised &
Unsupervised
Machine Learning

Supervised Learning

Word sense disambiguation:

- ... company said the plant is still operating.

 - factory sense +

- ... and divide life into plant and animal kingdom.

 - living organism sense -
Supervised Learning

Word sense disambiguation:
- ... company said the plant is still operating.
- ...and divide life into plant and animal kingdom.

Supervised Word Sense Disambiguation:
1. Label a large number of sentences with the correct sense y
2. Each sentence x is mapped to predictive features $f_k(x,y)$
3. Using labeled data, learn a weight w_k for each f_k
4. Weighted features active in x provide $score(x,y)$ for any given x
5. Label any new input x using $score(x,y)$: output y with best score
Unsupervised Learning

• Can we learn the labels without any supervision?

• Assumptions about unsupervised learning
 – Clustering (group by similarity)
 – Maximum Likelihood (generative models)
 – Co-training (learn from agreement with others)
 – Self-training (learn from agreement between features)
Problem with Clustering

- Having similar elements grouped is not enough
- Which class corresponds to which cluster?
- **Identifiable problem** = a problem in which a small number of labeled examples help identify the class of a cluster
- Problem: natural language learning tasks are not easily identifiable

Maximum Likelihood (EM)

(Castelli and Cover, 1995)

Word sense disambiguation:

- ... company said the plant is still operating.
- (company, operating) sense +

- ... and divide life into plant and animal kingdom.
- (life, animal, kingdom) sense +

Construct a probabilistic model $P(y, x)$:

1. $P(y, x) = P(y_i, f_1(x), ..., f_m(x)) = P(y_i) \times P(f_1 | y_i) \times ... \times P(f_m | y_i)$
2. Some examples are labeled (y is known) others are not
3. Likelihood of the data $L = P(y_1, x_1) \times ... \times P(y_m, x_m) \times \left[P(+, x_{m+1}) + P(-, x_{m+1}) \right] \times ... \times \left[P(+, x_n) + P(-, x_n) \right]$ labeled & unlabeled
4. The EM algorithm: searches for values of $P(y)$ and $P(f_k | y)$ to give the maximum value for L
Co-training (Blum and Mitchell, 1998)

... says \[\text{[ne Maury Cooper]}\], a vice \[\text{[context president]}\] at S. & P.

- Is \textit{Maury Cooper} a PERSON name?
- Assume a feature in the context (\textit{president}) predicts that \textit{Maury Cooper} is a PERSON name
- This creates a newly labeled item, the feature \textit{Cooper} can now be associated with PERSON
- In another example, the feature \textit{Cooper} can now be sufficient to label \textit{Mr. Cooper} as a PERSON
- More importantly, this new example indicates that the feature \textit{old} is now likely to modify a PERSON
- The feature \textit{old} modifying other noun phrases can then be used to label them as PERSON, and so on ...

... hired \[\text{[ne Mr. Cooper]}\], 61 years \[\text{[context old]}\], as director.

Self-Training / Yarowsky Algorithm (Yarowsky, 1995)

- Example: disambiguate 2 senses of \textit{sentence}
- Seed rules:
 - If \textit{context contains served}, label +1, conf = 1.0
 - If \textit{context contains reads}, label -1, conf = 1.0
- Seed rules label 8 out of 303 unlabeled examples
- Create new rules from these 8 pseudo-labeled examples
 - If feature \(f\) co-occurs with served, label +1, \(\text{conf} = \text{Pr}(+1|f)\)
 - If feature \(f\) co-occurs with reads, label -1, \(\text{conf} = \text{Pr}(-1|f)\)
 - Feature \(f\) could co-occur with both served & reads
- These 8 pseudo-labeled examples provide 6 rules above 0.95 conf threshold (including the original seed rules) e.g.
 - If \textit{context contains read}, label -1, conf = 0.953
- These 6 rules label 151 out of 303 unlabeled examples
Example: disambiguate 2 senses of sentence

- These 151 pseudo-labeled examples provide 60 rules above the threshold, e.g.
 - If context contains prison, label +1, conf = 0.989
 - If prev word is life, label +1, conf = 0.986
 - If prev word is his, label +1, conf = 0.983
 - If next word is from, label -1, conf = 0.982
 - If context contains relevant, label -1, conf = 0.953
 - If context contains page, label -1, conf = 0.953

- After 5 iterations, 297/303 unlabeled examples are permanently labeled (no changes possible)
- Building final classifier gives 67% accuracy on test set of 515 sentences. With some “tricks” we can get 76% accuracy.

Semi-supervised Learning

- Use few supervised examples to start the learning process
- These labeled examples provide the desired class labels for the categories we will discover
- Four methods to compare:
 - Baseline (knowledge-free)
 - Maximum Likelihood using EM
 - Co-training (requires two views to bootstrap)
 - Self-training (Yarowsky algorithm)
Experiments

Named Entity Classification
(Collins and Singer, 1999)

• 971,476 sentences from the NYT were provided a full syntactic parse
 – Using a statistical parser (Collins parser)

• The task is to identify three types of named entities:
 1. Location (LOC)
 2. Person (PER)
 3. Organization (ORG)
 – 1. not a NE or “don’t know”
Syntax -> Lexical Semantics

Named Entity Classification

- Noun phrases were extracted that met the following conditions
 1. The NP contained only words tagged as proper nouns
 2. The NP appeared in the following two syntactic contexts:
 - Modified by an appositive whose head is a singular noun
 - In a prepositional phrase modifying an NP whose head is a singular noun
Named Entity Classification
(Collins and Singer, 1999)

- The task: classify NPs into LOC, PER, ORG
- 89,305 training examples with 68,475 distinct feature types
 - 88,962 was used in CS99 experiments
- 1000 test data examples (includes NPs that are not LOC, PER or ORG)
 - Month names are easily identifiable as not named entities: leaves 962 examples
 - Still 85 NPs that are not LOC, PER, ORG.
- **Clean** accuracy over 877; **Noisy** over 962
Yarowsky Variants

(Abney 2004, Collins and Singer, 1999)

• A trick from Co-training (Blum and Mitchell 1998) is to be cautious. Don’t add all rules above the 0.95 threshold
• Add only n rules per label (say 5) and increase this amount by n in each iteration
• Changes the dynamics of learning in the algorithm but not the objective fn
• Two variants: Yarowsky (basic), Yarowsky (cautious)
• Without a threshold: Yarowsky (no threshold)

Results

<table>
<thead>
<tr>
<th>Learning Algorithm</th>
<th>Accuracy (Clean)</th>
<th>Accuracy (Noisy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (all organization)</td>
<td>45.8</td>
<td>41.8</td>
</tr>
<tr>
<td>EM</td>
<td>83.1</td>
<td>75.8</td>
</tr>
<tr>
<td>Yarowsky (basic)</td>
<td>80.7</td>
<td>73.5</td>
</tr>
<tr>
<td>Yarowsky (no threshold)</td>
<td>80.3</td>
<td>73.2</td>
</tr>
<tr>
<td>Yarowsky (cautious)</td>
<td>91</td>
<td>83</td>
</tr>
<tr>
<td>Co-Training</td>
<td>91</td>
<td>83</td>
</tr>
</tbody>
</table>
Word Sense Disambiguation

• Data from (Eisner and Karakos 2005)
• Disambiguate two senses each for drug, duty, land, language, position, sentence (Gale et. al. 1992)
• Source of unlabeled data: 14M word Canadian Hansards (English only)
• Two seed rules for each disambiguation task from (Eisner and Karakos 2005)

Word Sense Disambiguation

• Just as people become addicted to drugs and alcohol, they become addicted to gambling.
• Why are the socialists and their spouse, the Liberals, acting like intoxicated drug addicts?
• The NDP is the only group in this House which does not need drugs to suffer from fantasies.
• Our young Canadians are not all a bunch of drug addicts, alcoholics and suicidal people.

• Drug information to physicians is being distributed exclusively by the drug companies themselves
• Does the Minister think that the people of Canada are being hosed by these drug companies?
Word Sense Disambiguation

• Just as people become addicted to drugs and alcohol, they become addicted to gambling.
• Why are the socialists and their spouse, the Liberals, acting like intoxicated drug addicts?
• The NDP is the only group in this House which does not need drugs to suffer from fantasies.
• Our young Canadians are not all a bunch of drug addicts, alcoholics and suicidal people.

• Drug information to physicians is being distributed exclusively by the drug companies themselves.
• Does the Minister think that the people of Canada are being hosed by these drug companies?

Results

<table>
<thead>
<tr>
<th>Learning Algorithm</th>
<th>drug</th>
<th>land</th>
<th>sentence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Train / Test size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yarowsky (basic)</td>
<td>53.3</td>
<td>79.3</td>
<td>67.7</td>
</tr>
<tr>
<td>Yarowsky (no threshold)</td>
<td>52</td>
<td>79</td>
<td>64.8</td>
</tr>
<tr>
<td>Yarowsky (cautious)</td>
<td>55.9</td>
<td>79</td>
<td>76.1</td>
</tr>
<tr>
<td>DL-CoTrain</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2 views = long distance v.s. immediate context)</td>
<td>53.1</td>
<td>77.7</td>
<td>75.9</td>
</tr>
</tbody>
</table>
Summary

• Start from a small set of seed rules.
• Bootstrapping works by trading precision for recall – very cautiously.
 – Precision: number of correct predictions (be conservative = make fewer predictions)
 – Recall: how many correct examples were recovered (be rash = make lots of predictions)
• Effective in learning diverse natural language tasks (finding names, identifying word senses, etc.)
• Questions that I did not address (yet):
 – Does the choice of seed rules matter in bootstrapping?
 – Can bootstrapping be used for complex tasks like translation?
 – Is there a theoretical analysis of bootstrapping?

Seed Rules
Seeds

- Selecting seed rules: what is a good strategy?
 - **Frequency**: sort by frequency of feature occurrence
 - **Contexts**: sort by number of other features a feature was observed with
 - **Weighted**: sort by a weighted count of other features observed with feature.

 \[
 \text{Weight}(f) = \frac{\text{count}(f)}{\sum \text{count}(f')}
 \]

Seeds

- In each case the frequencies were taken from the unlabeled training data
- Seeds were extracted from the sorted list of features by manual inspection and assigned a label (the entire example was used)
- Location (LOC) features appear infrequently in all three orderings
- It is possible that some good LOC seeds were missed
Seeds

<table>
<thead>
<tr>
<th>Number of Rules</th>
<th>Frequency</th>
<th>Contexts</th>
<th>Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n/3) rules/label</td>
<td>Clean</td>
<td>Noisy</td>
<td>Clean</td>
</tr>
<tr>
<td>3</td>
<td>84</td>
<td>77</td>
<td>84</td>
</tr>
<tr>
<td>9</td>
<td>91</td>
<td>83</td>
<td>90</td>
</tr>
<tr>
<td>15</td>
<td>91</td>
<td>83</td>
<td>91</td>
</tr>
<tr>
<td>7 (CS99)</td>
<td>Clean: 91</td>
<td>Noisy: 83</td>
<td></td>
</tr>
</tbody>
</table>
Statistical Machine Translation

Learn to translate from previously translated text.
Align words in a parallel text.
Extract phrases based on the word alignment.
Translate by using a probabilistic model to combine and then reorder phrases.

Self-training for MT

• Can a machine translation system learn by translating twice?
• Translate a second time by observing its own output translation.
• Why does it work? Reinforces parts of the phrase translation model which are relevant for test corpus
• Glue phrases from test data used to compose new phrases (most phrases still from original phrase table)

<table>
<thead>
<tr>
<th>eval-04</th>
<th>editorials</th>
<th>newswire</th>
<th>speeches</th>
</tr>
</thead>
<tbody>
<tr>
<td>sentences</td>
<td>449</td>
<td>901</td>
<td>438</td>
</tr>
<tr>
<td>selected translations</td>
<td>101</td>
<td>187</td>
<td>113</td>
</tr>
<tr>
<td>size of adapted phrase table</td>
<td>1,981</td>
<td>3,591</td>
<td>2,321</td>
</tr>
<tr>
<td>adapted phrases used</td>
<td>707</td>
<td>1,314</td>
<td>815</td>
</tr>
<tr>
<td>new phrases</td>
<td>679</td>
<td>1,359</td>
<td>657</td>
</tr>
<tr>
<td>new phrases used</td>
<td>23</td>
<td>47</td>
<td>25</td>
</tr>
</tbody>
</table>
Self-training for MT

Table X. Translation examples from the 2006 GALE corpus.

baseline	[the report said] [that the] [united states] [is] [a potential] [problem] [the] [practice of] [china’s] [foreign policy] [is] [likely to] [weaken us] [influence]
adapted	[the report] [said that] [this is] [a potential] [problem] [in] [the united states] [in] [china] [is] [likely to] [weaken] [the impact of] [american foreign policy]
reference	the report said that this is a potential problem for America. China’s course of action could possibly weaken the influence of American foreign policy.

baseline	[what we advocate] [his] [name]
adapted	[we] [advocate] [him]
reference	we advocate him.

Analysis
Analysis of Self-Training

(Features) F

X (Instances)

- company
- operating
- life
- animal

...

...

We propose to view **bootstrapping** as **propagating** the labels of initially labeled nodes to the rest of the graph nodes.
Majority

\[
\begin{align*}
\text{Labeling distribution} & \quad \theta_f \\
\text{Labeling distribution} & \quad \theta_i \\
\text{Converges in Poly time } & \quad O(|F|^2 |X|^3) \\
\end{align*}
\]