Code Optimization

- There is no fully optimizing compiler O
- Let’s assume O exists: it takes a program P and produces output $\text{Opt}(P)$ which is the smallest possible
- Imagine a program Q that produces no output and never terminates, then $\text{Opt}(Q)$ could be:
 L1: goto L1
- Then to check if a program P never terminates on some inputs, check if $\text{Opt}(P(i))$ is equal to $\text{Opt}(Q)$ = Solves the Halting Problem
- Full Employment Theorem for Compiler Writers, see Rice(1953)
Optimizations

• Non-Optimizations
• Correctness of optimizations
 – Optimizations must not change the meaning of the program
• Types of optimizations
 – Local optimizations
 – Global dataflow analysis for optimization
 – Static Single Assignment (SSA) Form
• Amdahl’s Law

Non-Optimizations

```c
enum { GOOD, BAD }; extern int test_condition();

void check()
{
  int rc;

  rc = test_condition();
  if (rc != GOOD) {
    exit(rc);
  }
}
```

Which version of check runs faster?
Types of Optimizations

• High-level optimizations
 – function inlining
• Machine-dependent optimizations
 – e.g., peephole optimizations, instruction scheduling
• Local optimizations or Transformations
 – within basic block

Types of Optimizations

• Global optimizations or Data flow Analysis
 – across basic blocks
 – within one procedure (intraprocedural)
 – whole program (interprocedural)
 – pointers (alias analysis)
Maintaining Correctness

• What does this program output?

 3

 Not:

 $ decafcc byzero.decaf
 Floating exception

int main()
{
 int x;
 if (false) {
 x = 3/(3-3);
 } else {
 x = 3;
 }
 print_int(x);
}

Peephole Optimization

• Redundant instruction elimination

 – If two instructions perform that same function and are in the same basic block, remove one
 – Redundant loads and stores
 li $t0, 3
 li $t0, 4
 – Remove unreachable code
 li $t0, 3
 goto L2

... (all of this code until next label can be removed)
Peephole Optimization

- Flow control optimization
 goto L1
 L1: goto L2

- Algebraic simplification

- Reduction in strength
 - Use faster instructions whenever possible

- Use of Machine Idioms

- Filling delay slots

Constant folding & propagation

- Constant folding
 - compute expressions with known values at compile time

- Constant propagation
 - if constant assigned to variable, replace uses of variable with constant unless variable is reassigned
Constant folding & propagation

• Copy Propagation

Transformations

• Structure preserving transformations

• Common subexpression elimination

 a := b + c
 b := a - d
 c := b + c
 d := a - d (⇒ b)
Transformations

• Dead-code elimination (combines copy propogation with removal of unreachable code)

 if (debug) { f(); } /* debug := false (as a constant) */
 if (false) { f(); } /* constant folding */
 using deadcode elimination, code for f() is removed

 x := t3
 x := t3
 t4 := x becomes t4 := t3

Transformations

• Renaming temporary variables

 t1 := b+c can be changed to t2 := b+c
 replace all instances of t1 with t2

• Interchange of statements

 t1 := b+c t2 := x+y
 t2 := x+y can be converted to t1 := b+c
Transformations

- Algebraic transformations
 \[d := a + 0 \ (\Rightarrow a) \]
 \[d := d \times 1 \ (\Rightarrow \text{eliminate}) \]

- Reduction of strength
 \[d := a^{**} 2 \ (\Rightarrow a \times a) \]

Control Flow Graph (CFG)

```c
int main()
{
    extern int f(int);
    int i;
    int *a;
    for (i = 0; i < 10; i = i + 1)
    {
        a[i] = f(i);
    }
}
```
SSA Form

- *def-use* chains keep track of where variables were defined and where they were used
- Consider the case where each variable has only one definition in the intermediate representation
- One static definition, accessed many times
- Static Single Assignment Form (SSA)
SSA Form

• SSA is useful because
 – Dataflow analysis and optimization is simpler when each variable has only one definition
 – If a variable has N uses and M definitions (which use N+M instructions) it takes N*M to represent def-use chains
 – Complexity is the same for SSA but in practice it is usually linear in number of definitions
 – SSA simplifies the register interference graph

SSA Form

• Original Program

 \[
 \begin{align*}
 a & := x + y \\
 b & := a - 1 \\
 a & := y + b \\
 b & := x * 4 \\
 a & := a + b
 \end{align*}
 \]

• SSA Form

 \[
 \begin{align*}
 a_1 & := x + y \\
 b_1 & := a_1 - 1 \\
 a_2 & := y + b_1 \\
 b_2 & := x * 4 \\
 a_3 & := a_2 + b_2
 \end{align*}
 \]

what about conditional branches?
SSA Form

1: \(b := M[x] \)
 \(a := 0 \)

2: if \(b < 4 \)

3: \(a := b \)

4: \(c := a + b \)

1: \(b1 := M[x1] \)
 \(a1 := 0 \)

2: if \(b1 < 4 \)

3: \(a2 := b1 \)

4: \(a3 := \phi(a2, a1) \)
 \(c1 := a3 + b1 \)

Edge-split SSA Form

1: \(b := M[x] \)
 \(a := 0 \)

2: if \(b < 4 \)

3: \(a := b \)

4: \(c := a + b \)

1: \(b1 := M[x1] \)
 \(a1 := 0 \)

2: if \(b1 < 4 \)

3: \(a2 := b1 \)

5:

4: \(a3 := \phi(a2, a1) \)
 \(c1 := a3 + b1 \)
SSA Form

- Conversion from a Control Flow Graph (created from TAC) into SSA Form is not trivial
- SSA creation algorithms:
 - Original algorithm by Cytron et al. 1986
 - Lengauer-Tarjan algorithm (see the Tiger book by Andrew W. Appel for more details)
 - Harel algorithm

Conversion to SSA Form

- Simple idea: add a ϕ function for every variable at a join point
- A join point is any node in the control-flow graph with more than one predecessor
- But: this is wasteful and unnecessary.
Conversion to SSA

1: \(a := 0 \)

2: \(b := a + 1 \)
 \(c := c + b \)
 \(a := b \times 2 \)
 if \(a < N \)

3: return \(c \)

Conversion to SSA

1: \(a1 := 0 \)

2: \(a3 := \phi(a2, a1) \)
 \(b1 := \phi(b0, b2) \)
 \(c2 := \phi(c0, c1) \)
 \(b2 := a3 + 1 \)
 \(c1 := c2 + b2 \)
 \(a2 := b2 \times 2 \)
 if \(a2 < N \)

3: return \(c1 \)

- \(b1 \) is never used, stmt can be deleted
- \(b2 \) changes in each loop. SSA is not functional programming!
Dominance Relation

- X dominates Y if every path from the start node to Y goes through X
- $D(X)$ is the set of nodes that X dominates
- X strictly dominates Y if X dominates Y and $X \neq Y$

$D(5) = \{6, 7, 8\}$

5 strictly dominates 6, 7, 8
Dominance Relation

\[D(5) = \{6, 7, 8\} \]

5 strictly dominates 6, 7, 8

Dominance Property of SSA

- Essential property of SSA form is the definition of a variable must dominate use of the variable:
 - If \(X \) is used in a \(\phi \) function in block \(n \), then definition of \(X \) dominates every predecessor of \(n \)
 - If \(X \) is used in a non-\(\phi \) statement in block \(n \), then the definition of \(X \) dominates \(n \).
Dominance Frontier

- **X strictly dominates Y** if X dominates Y and X ≠ Y
- **Dominance Frontier (DF)** of node X is the set of all nodes Y such that:
 - X dominates a predecessor of Y, AND
 - X does not strictly dominate Y

\[
\begin{align*}
D(5) &= \{6, 7, 8\} \\
S(6) &= \{4, 8\} \\
S(7) &= \{8, 12\} \\
S(8) &= \{5, 13\}
\end{align*}
\]

\[
\begin{align*}
DF(5) &= \{4, 12, 5, 13\}
\end{align*}
\]
Dominance Frontier

• Algorithm to compute \(\text{DF}(X)\):
 - \(\text{Local}(X) := \text{set of successors of } X \text{ who do not immediately dominate } X\)
 - \(\text{Up}(X) := \text{set of nodes in } \text{DF}(X) \text{ that are not dominated by } X\text{'s immediate dominator.}\)
 - \(\text{DF}(X) := \text{Union of } \text{Local}(X) \& (\text{Union of } \text{Up}(K) \text{ for all } K \text{ that are children of } X)\)

Dominance Frontier

• \(\text{ComputeDF}(X)\):
 \[S := \{\} \quad // \text{empty set}\]
 For each node \(Y\) in \(\text{Successor}(X)\):
 If \(Y\) is not immediately dominating \(X\):
 \[S := S + \{Y\} \quad // \text{this is } \text{Local}(X), + \text{ means union}\]
 For each child \(K\) of \(X\) in \(\text{D}(X)\): // \(X\) dominates \(K\)
 For each element \(Y\) in \(\text{ComputeDF}(K)\):
 If \(X\) does not dominate \(Y\),
 \[S := S + \{Y\} \quad // \text{this is } \text{Up}(X)\]
 \(\text{DF}(X) = S\)
Dominance Frontier

• Dominance Frontier Criterion
 – If node X contains definition of some variable \(a \), then any node Y in the DF(X) needs a \(\phi \) function for \(a \).

• Iterated Dominance Frontier
 – Since a \(\phi \) function is itself a definition of a new variable, we must iterate the DF criterion until no nodes in the CFG need a \(\phi \) function.

Placing \(\phi \) Functions

1: \(V:=_; W:=_ \)

2:

3: \(V:=_ \)

4:

5: \(W:=_ \)

6:

7:

DF(3)={7}

Empty boxes indicate uses of variables \(V, W \)
Placing ϕ Functions

1: $V := _-$; $W := _-$

2:

3: $V := _-$

4:

5: $W := _-$

6:

7: $V := \phi(V,V)$

$DF(3) = \{7\}$

$DF(5) = \{6\}$
Placing ϕ Functions

1: $V := __; W := _$

2:

3: $V := _$

4:

5: $W := _$

6: $W := \phi(W,W)$

7: $V := \phi(V,V); W := \phi(W,W)$

DF(6)={7}

Rename Variables

1: $V1 := __; W1 := _$

2:

3: $V2 := _$

4:

5: $W2 := _$

6: $W3 := \phi(W1,W2)$

7: $V3 := \phi(V1,V2); W4 := \phi(W1,W3)$

DF(6)={7}
i := 1
j := 1
k := 0
while k < 100:
 if j < 20:
 j := i
 k := k + 1
 else:
 j := k
 k := k + 1
return j

Control Flow Graph

1: i := 1 j := 1 k := 0
2: if k < 100
3: if j < 20
4: return j
5: j := i
 k := k + 1
6: j := k
 k := k + 1
7:

Program Control Flow Graph

• D(1) = {2, 3, 4, 5, 6, 7}
• D(2) = {3, 4, 5, 6, 7}
• D(3) = {5, 6, 7}
• D(4) = {}
• D(5) = {}
• D(6) = {}
• D(7) = {}
Converting to SSA

Control Flow Graph

1: i := 1 j := 1
k := 0

2: if k < 100

3: if j < 20
4: return j

5: j := i
k := k+1

6: j := k
k := k+1

7:

Dominance Relations

•D(1) = {2,3,4,5,6,7}
•D(2) = {3,4,5,6,7}
•D(3) = {5,6,7}
•D(4) = {}
•D(5) = {}
•D(6) = {}
•D(7) = {}

Dominator Tree

1:

2:

3:

4:

5:

6:

7:

Dominance Relations

•DF(1) = {}
•DF(2) = {2}
•DF(3) = {2}
•DF(4) = {}
•DF(5) = {7}
•DF(6) = {7}
•DF(7) = {2}
Converting to SSA Form

1: i := 1
 j := 1
 k := 0

2:
 if k2 < 100

3: if j < 20

4: return j

5: j := i
 k := k+1

6: j := k
 k := k+1

7: j := \phi(j, j)

Variable j in 5
DF(5) = { 7 }

Variable j in 7
DF(7) = { 2 }
Converting to SSA Form

1: i := 1 j := 1 k := 0

2: j := φ(j, j)
 if k2 < 100

3: if j < 20

4: return j

5: j := i
 k := k+1

6: j := k
 k := k+1

7: j := φ(j, j)
 k := φ(k, k)

Variable j in 5
DF(5) = { 7 }

Variable j in 7
DF(7) = { 2 }

Variable j in 6
DF(6) = { 7 }

Variable k in 5
DF(5) = { 7 }

Variable k in 7
DF(7) = { 2 }

Variable k in 6
DF(6) = { 7 }
Converting to SSA Form

1: \(i_1 := 1 \quad j_1 := 1 \quad k_1 := 0 \)

2: \(j_2 := \phi(j_4, j_1) \quad k_2 := \phi(k_4, k_1) \quad \text{if } k_2 < 100 \)

3: if \(j_2 < 20 \)

4: return \(j_2 \)

5: \(j_3 := i_1 \quad k_3 := k_2 + 1 \)

6: \(j_5 := k_2 \quad k_5 := k_2 + 1 \)

7: \(j_4 := \phi(j_3, j_5) \quad k_4 := \phi(k_3, k_5) \)

Optimizations using SSA

- SSA form contains statements, basic blocks and variables
- Dead-code elimination
 - if there is a variable \(v \) with no uses and \(\text{def} \) of \(v \) has no side-effects, delete statement defining \(v \)
 - if \(z := \phi(x, y) \) then eliminate this stmt if no \(\text{def}s \) for \(x,y \)
Optimizations using SSA

• Constant Propagation
 – if $v := c$ for some constant c then
 replace v with c for all uses of v
 – $v := \phi (c_1, c_2, \ldots, c_n)$ where all c_i are equal
to c can be replaced by $v := c$

Optimizations using SSA

• Conditional Constant Propagation
 – In previous flow graph, is j always equal to 1?
 – If $j = 1$ always, then block 6 will never execute
 and so $j := i$ and $j := 1$ always
 – If $j > 20$ then block 6 will execute, and $j := k$
 will be executed so that eventually $j > 20$
 – Which will happen? Using SSA we can find the
 answer.
Optimizations using SSA

1: i1 := 1 j1 := 1 k1 := 0

2: j2 := φ(j4, j1) k2 := φ(k4, k1)
 if k2 < 100

3: if j2 < 20

4: return j2

5: j3 := i1 k3 := k2+1

6: j5 := k2 k5 := k2+1

7: j4 := φ(j3, j5) k4 := φ(k3,k5)
Optimizations using SSA

1: \texttt{i1 := 1} \quad j1 := 1 \quad k1 := 0

2: \texttt{j2 := } \phi(j4, 1) \quad \texttt{k2 := } \phi(k4, 0) \quad \texttt{if k2 < 100}

3: \texttt{if j2 < 20}

4: \texttt{return} \texttt{j2}

5: \texttt{j3 := 1} \quad \texttt{k3 := k2+1}

6: \texttt{k5 := k2+1}

7: \texttt{j4 := } \phi(j3, k2) \quad \texttt{k4 := } \phi(k3,k5)
Optimizations using SSA

1: \(i_1 := 1 \quad j_1 := 1 \quad k_1 := 0 \)

2: \(j_2 := \phi(1, 1) \quad k_2 := \phi(k_4, 0) \quad \text{if } k_2 < 100 \)

3: if \(j_2 < 20 \)
4: return \(j_2 \)

5: \(j_3 := 1 \quad k_3 := k_2 + 1 \)

7: \(j_4 := \phi(1) \quad k_4 := \phi(k_3) \)
Optimizations using SSA

1: \(i1 := 1\) j1 := 1
k1 := 0

2: \(k2 := \phi(k4, 0)\)
 if \(k2 < 100\)

3: if \(1 < 20\)

4: return 1

5: \(k3 := k2+1\)

6: \(k4 := \phi(k3)\)

Optimizations using SSA

1:

2: \(k2 := \phi(k4, 0)\)
 if \(k2 < 100\)

3:

4: return 1

5: \(k3 := k2+1\)

6: \(k4 := \phi(k3)\)
Optimizations using SSA

1:

2: $k_2 := \phi(k_3, 0)$ if $k_2 < 100$

3:

4: return 1

5: $k_3 := k_2 + 1$

Optimizations using SSA

• Arrays, Pointers and Memory
 – For more complex programs, we need dependencies: how does statement B depend on statement A?
 – **Read after write:** A defines variable v, then B uses v
 – **Write after write:** A defines v, then B defines v
 – **Write after read:** A uses v, then B defines v
 – **Control:** A controls whether B executes
Optimizations using SSA

- Memory dependence
 \[
 M[i] := 4 \\
 x := M[j] \\
 M[k] := j
 \]

- We cannot tell if \(i, j, k\) are all the same value which makes any optimization difficult
- Similar problems with Control dependence
- SSA does not offer an easy solution to these problems

More on Optimization

- *Advanced Compiler Design and Implementation* by Steven S. Muchnick
 - Control Flow Analysis
 - Data Flow Analysis
 - Dependence Analysis
 - Alias Analysis
 - Early Optimizations
 - Redundancy Elimination
 - Loop Optimizations
 - Procedure Optimizations
 - Code Scheduling (pipelining)
 - Low-level Optimizations
 - Interprocedural Analysis
 - Memory Hierarchy
Amdahl’s Law

• Speedup_{total} = ((1 - Time_{Fractionoptimized}) + Time_{Fractionoptimized}/ Speedup_{optimized})^{-1}

• Optimize the common case, 90/10 rule
• Requires quantitative approach
 – Profiling + Benchmarking
• Problem: Compiler writer doesn’t know the application beforehand

Summary

• Optimizations can improve speed, while maintaining correctness
• Various early optimization steps
• Static Single-Assignment Form (SSA)
• Optimization using SSA Form