CMPT 379
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop
Lexical Analysis

• Also called scanning, take input program string and convert into tokens

• Example:

```c
double f = sqrt(-1);
```

<table>
<thead>
<tr>
<th>Token</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_DOUBLE</td>
<td>"double"</td>
</tr>
<tr>
<td>T_IDENT</td>
<td>"f"</td>
</tr>
<tr>
<td>T_OP</td>
<td>"="</td>
</tr>
<tr>
<td>T_IDENT</td>
<td>"sqrt"</td>
</tr>
<tr>
<td>T_LPAREN</td>
<td>"("</td>
</tr>
<tr>
<td>T_OP</td>
<td>"-"</td>
</tr>
<tr>
<td>T_INTCONSTANT</td>
<td>"1"</td>
</tr>
<tr>
<td>T_RPAREN</td>
<td>")"</td>
</tr>
<tr>
<td>T_SEP</td>
<td>";"</td>
</tr>
</tbody>
</table>
Token Attributes

• Some tokens have attributes
 – T_IDENT “sqrt”
 – T_INTCONSTANT 1

• Other tokens do not
 – T_WHILE

• Token=T_IDENT, Lexeme=“sqrt”, Pattern

• Source code location for error reports
Lexical errors

• What if user omits the space in “doublef”?
 – No lexical error, single token
 \text{T_IDENT(“doublef”)} is produced instead of
 sequence \text{T_DOUBLE, T_IDENT(“f”)}!

• Typically few lexical error types
 – E.g., illegal chars, opened string constants or
 comments that are not closed
Lexical errors

• Lexical analysis should not disambiguate tokens,
 – e.g. unary op + versus binary op +
 – Use the same token T_PLUS for both
 – It’s the job of the parser to disambiguate based on the context

• Language definition should not permit crazy long distance effects (e.g. Fortran)
 DO 5 I = 1,5 T_DO T_INT(5) T_ID(I)
 DO 5 I = 1.5 T_ID(DO5I) T_EQ
Ad-hoc Scanners
Implementing Lexers: Loop and switch scanners

- Ad hoc scanners
- Big nested switch/case statements
- Lots of getc()/ungetc() calls
 - Buffering; Sentinels for push-backs; streams
- Can be error-prone, use only if
 - Your language’s lexical structure is very simple
 - The tools do not provide what you need for your token definitions
- Changing or adding a keyword is problematic
- Have a look at an actual implementation of an ad-hoc scanner
Implementing Lexers: Loop and switch scanners

• Another problem: how to show that the implementation actually captures all tokens specified by the language definition?
• How can we show correctness
• Key idea: separate the definition of tokens from the implementation
• Problem: we need to reason about patterns and how they can be used to define tokens (recognize strings).
Specification of Patterns using Regular Expressions
Formal Languages: Recap

• Symbols: \(a, b, c \)
• Alphabet: finite set of symbols \(\Sigma = \{ a, b \} \)
• String: sequence of symbols \(\text{bab} \)
• Empty string: \(\epsilon \)
 Define: \(\Sigma^\epsilon = \Sigma \cup \{ \epsilon \} \)
• Set of all strings: \(\Sigma^* \)
 cf. The Library of Babel, Jorge Luis Borges
• (Formal) Language: a set of strings
 \(\{ a^n b^n : n > 0 \} \)
Regular Languages

• The set of regular languages: each element is a regular language
• Each regular language is an example of a (formal) language, i.e. a set of strings
 e.g. \{ a^m b^n : m, n are +ve integers \}
Regular Languages

• Defining the set of all regular languages:
 – The empty set and \{a\} for all a in \(\Sigma^e\) are regular languages
 – If \(L_1\) and \(L_2\) and L are regular languages, then:
 \[
 L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\} \quad \text{(concatenation)}
 \]
 \[
 L_1 \cup L_2 \quad \text{(union)}
 \]
 \[
 L^* = \bigcup_{i=0}^{\infty} L^i \quad \text{(Kleene closure)}
 \]
 are also regular languages
 – There are no other regular languages
Formal Grammars

• A formal grammar is a concise description of a formal language
• A formal grammar uses a specialized syntax
• For example, a regular expression is a concise description of a regular language
 \((a|b)*abb\) : is the set of all strings over the alphabet \{a, b\} which end in \textit{abb}
• We will use regular expressions (regexps) in order to define tokens in our compiler,
 – e.g. lexemes for string tokens are " (Σ\")* "
Regular Expressions: Definition

• Every symbol of $\Sigma \cup \{ \varepsilon \}$ is a regular expression
 – E.g. if $\Sigma = \{a,b\}$ then ‘a’, ‘b’ are regexps

• If r_1 and r_2 are regular expressions, then the core operators to combine two regexps are
 – Concatenation: $r_1 r_2$, e.g. ‘ab’ or ‘aba’
 – Alternation: $r_1 | r_2$, e.g. ‘a|b’
 – Repetition: r_1^*, e.g. ‘a*’ or ‘b*’

• No other core operators are defined
 – But other operators can be defined using the basic operators (as in lex regular expressions) e.g. $a+ = aa*$
<table>
<thead>
<tr>
<th>Expression</th>
<th>Matches</th>
<th>Example</th>
<th>Using core operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>non-operator character c</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>\c</td>
<td>character c literally</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>"s"</td>
<td>string s literally</td>
<td>"**"</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>any character but newline</td>
<td>a.*b</td>
<td></td>
</tr>
<tr>
<td>^</td>
<td>beginning of line</td>
<td>^abc</td>
<td>used for matching</td>
</tr>
<tr>
<td>$</td>
<td>end of line</td>
<td>abc$</td>
<td>used for matching</td>
</tr>
<tr>
<td>[s]</td>
<td>any one of characters in string s</td>
<td>[abc]</td>
<td>(alblc)</td>
</tr>
<tr>
<td>[^s]</td>
<td>any one character not in string s</td>
<td>[^a]</td>
<td>(blc) where Σ = {a,b,c}</td>
</tr>
<tr>
<td>r*</td>
<td>zero or more strings matching r</td>
<td>a*</td>
<td></td>
</tr>
<tr>
<td>r+</td>
<td>one or more strings matching r</td>
<td>a+</td>
<td>aa*</td>
</tr>
<tr>
<td>r?</td>
<td>zero or one r</td>
<td>a?</td>
<td>(a</td>
</tr>
<tr>
<td>r{m,n}</td>
<td>between m and n occurences of r</td>
<td>a{2,3}</td>
<td>(aalaaa)</td>
</tr>
<tr>
<td>r₁r₂</td>
<td>an r₁ followed by an r₂</td>
<td>ab</td>
<td></td>
</tr>
<tr>
<td>r₁</td>
<td>r₂</td>
<td>an r₁ or an r₂</td>
<td>a</td>
</tr>
<tr>
<td>(r)</td>
<td>same as r</td>
<td>(a</td>
<td>b)</td>
</tr>
<tr>
<td>r₁</td>
<td>r₂</td>
<td>r₁ when followed by an r₂</td>
<td>abc/123</td>
</tr>
</tbody>
</table>
Regular Expressions: Definition

• Note that operators apply recursively and these applications can be ambiguous
 – E.g. is aa|bc equal to a(a|b)c or ((aa)|b)c?

• Avoid such cases of ambiguity - provide explicit arguments for each regexp operator
 – For convenience, for examples on this page, let us use the symbol ‘⋅’ to denote the operator for concatenation

• Remove ambiguity with an explicit regexp tree
 – a(a|b)c is written as (⋅(⋅a(|ab))c) or in postfix: aab⋅c⋅
 – ((aa)|b)c is written as (⋅(|(⋅aa)b)c) or in postfix: aa⋅b|c⋅
Regular Expressions: Definition

- Remove ambiguity with an explicit regexp tree
 - $a(a|b)c$ is written as $(\cdot(\cdot a(|ab))c)$
 - or in postfix: $aab|\cdot c$

- $((aa)|b)c$ is written as $(\cdot(|(\cdot aa)b)c)$
 - or in postfix: $aa\cdot b|c$

- Does the order of concatenation matter?
Equivalence of Regexps

- \((R|S)|T == R|(S|T) == R|S|T\)
- \((RS)T == R(ST)\)
- \((R|S) == (S|R)\)
- \(R*R* == (R*)* == R* == RR*|\varepsilon\)
- \(R** == R*\)
- \((R|S)T = RT|ST\)

- \(R(S|T) == RS | RT\)
- \((R|S)* == (R*S*)* == (R*S)*R* == (R*|S*)*\)
- \(RR* == R*R\)
- \((RS)*R == R(SR)*\)
- \(R = R|R = R\varepsilon\)
Equivalence of Regexps

- $0(10)^*1|(01)^*$
- $(01)(01)^*|(01)^*$
- $(01)(01)^*|(01)(01)^*|\varepsilon$
- $(01)(01)^*|\varepsilon$
- $(01)^*$

- $(RS)^*R == R(SR)^*$
- $RS == (RS)$
- $R^* == RR^*|\varepsilon$
- $R == R|R$
- $R^* == RR^*| \varepsilon$
Regular Expressions

• To describe all lexemes that form a token as a pattern
 – (0|1|2|3|4|5|6|7|8|9)+

• Need decision procedure: to which token does a given sequence of characters belong (if any)?
 – Finite State Automata
 – Can be deterministic (DFA) or non-deterministic (NFA)
Implementing Regular Expressions with Finite-state Automata
Deterministic Finite State Automata: DFA

- A set of states S
 - One start state q_0, zero or more final states F
- An alphabet Σ of input symbols
- A transition function:
 - $\delta: S \times \Sigma \rightarrow S$
- Example: $\delta(1, a) = 2$
DFA: Example

• What regular expression does this automaton accept?

Answer: (0|1)*00

A: start state
C: final state
Input string: 00100

DFA simulation takes at most \(n \) steps for input of length \(n \) to return accept or reject

- Start state: A
 1. \(\delta(A,0) = B \)
 2. \(\delta(B,0) = C \)
 3. \(\delta(C,1) = A \)
 4. \(\delta(A,0) = B \)
 5. \(\delta(B,0) = C \)
- no more input and C is final state: accept
Building a Lexical Analyzer

- Token \Rightarrow Pattern
- Pattern \Rightarrow Regular Expression
- Regular Expression \Rightarrow NFA
- NFA \Rightarrow DFA
- DFAs or NFAs for all the tokens \Rightarrow **Lexical Analyzer**
- Two basic rules to deal with multiple matching: **greedy match** + **regexp ordering**

Note that **greedy** means *longest leftmost match*
Lexical Analysis using Lex

{%
#include <stdio.h>
#define NUMBER 256
#define IDENTIFIER 257
%

/* regexp definitions */
num [0-9]+

%

{num} { return NUMBER; }
[a-zA-Z0-9]+ { return IDENTIFIER; }
%

int
main () {
 int token;
 while ((token = yylex())) {
 switch (token) {
 case NUMBER: printf("NUMBER: %s, LENGTH:%d\n", yytext, yyleng); break;
 case IDENTIFIER: printf("IDENTIFIER: %s, LENGTH:%d\n", yytext, yyleng); break;
 default: printf("Error: %s not recognized\n", yytext);
 }
 }
}
%}

2012-11-01 simpletok.lex
NFAs

• NFA: like a DFA, except
 – A transition can lead to more than one state, that is, \(\delta: S \times \Sigma \Rightarrow 2^S \)
 – One state is chosen non-deterministically
 – Transitions can be labeled with \(\varepsilon \), meaning states can be reached without reading any input, that is,
 \[\delta: S \times \Sigma \cup \{ \varepsilon \} \Rightarrow 2^S \]
Thompson’s construction
Converts regexps to NFA

Build NFA recursively from regexp tree

Build NFA with left-to-right parse of postfix string using a stack

Input = aab\cdot c\cdot

- read a, push n1 = nfa(a)
- read a, push n2 = nfa(a)
- read b, push n3 = nfa(b)
- read |, n3=pop(); n2=pop(); push n4 = nfa(or, n2, n3)
- read \cdot, n4 = pop(); n1 = pop(); push n5 = nfa(cat, n1, n4)
- read c, push n6 = nfa(c)
- read \cdot, n6 = pop(); n5 = pop(); push n7 = nfa(cat, n5, n6)
Thompson’s construction

- Converts regexps to NFA
- Six simple rules
 - Empty language
 - Symbols
 - Empty String
 - Alternation \((r_1 \text{ or } r_2)\)
 - Concatenation \((r_1 \text{ followed by } r_2)\)
 - Repetition \((r_1^*)\)

Used by Ken Thompson for pattern-based search in text editor QED (1968)
To keep things simple our version is more verbose
Thompson Rule 0

• For the empty language ϕ (optionally include a sinkhole state)
Thompson Rule 1

• For each symbol x of the alphabet, there is a NFA that accepts it (include a sinkhole state)
Thompson Rule 2

• There is an NFA that accepts only ε
Thompson Rule 3

• Given two NFAs for r_1, r_2, there is a NFA that accepts $r_1 \mid r_2$
Thompson Rule 3

• Given two NFAs for \(r_1, r_2 \), there is a NFA that accepts \(r_1 \mid r_2 \)
Thompson Rule 4

• Given two NFAs for r_1, r_2, there is a NFA that accepts $r_1 r_2$
Thompson Rule 4

- Given two NFAs for r_1, r_2, there is a NFA that accepts r_1r_2
Thompson Rule 5

• Given a NFA for r_1, there is an NFA that accepts r_1^*
Thompson Rule 5

• Given a NFA for r_1, there is an NFA that accepts r_1^*
Example

• Set of all binary strings that are divisible by four (include 0 in this set)
• Defined by the regexp: $((0|1)^*00) \mid 0$
• Apply Thompson’s Rules to create an NFA
Basic Blocks 0 and 1

• 0

• 1

(this version does not report errors: no sinkholes)
$\varepsilon 1 \varepsilon 0 \varepsilon$

$0|1$
$(0|1)^*$
\[(0\mid 1)^*00\]
[((0|1)*00)|0}
Simulating NFAs

- Similar to DFA simulation
- But have to deal with ϵ transitions and multiple transitions on the same input
- Instead of one state, we have to consider sets of states
- Simulating NFAs is a problem that is closely linked to converting a given NFA to a DFA
NFA to DFA Conversion

- Subset construction
- Idea: subsets of set of all NFA states are equivalent and become one DFA state
- Algorithm simulates movement through NFA
- Key problem: how to treat ε-transitions?
ε-Closure

• Start state: \(q_0 \)

• \(\varepsilon \)-closure(\(S \)): \(S \) is a set of states

\[
\text{initialize: } S \leftarrow \{q_0\} \\
T \leftarrow S \\
\text{repeat } T' \leftarrow T \\
\quad T \leftarrow T' \cup [\bigcup_{s \in T'} \text{move}(s, \varepsilon)] \\
\text{until } T = T'
\]
ε-Closure (T: set of states)

push all states in T onto stack
initialize ε-closure(T) to T

while stack is not empty do begin
 pop t off stack
 for each state u with $u \in \text{move}(t, \varepsilon)$ do
 if $u \notin \varepsilon$-closure(T) do begin
 add u to ε-closure(T)
push u onto stack
 end
 end
end
NFA Simulation

• After computing the ε-closure move, we get a set of states
• On some input extend all these states to get a new set of states

$$\text{DFAedge}(T, c) = \varepsilon\text{-closure} \left(\bigcup_{q \in T} \text{move}(q, c) \right)$$
NFA Simulation

• Start state: \(q_0 \)
• Input: \(c_1, \ldots, c_k \)

\[
T \leftarrow \epsilon\text{-closure}(\{q_0\})
\]

\[
\text{for } i \leftarrow 1 \text{ to } k
\]

\[
T \leftarrow \text{DFAedge}(T, c_i)
\]
Conversion from NFA to DFA

- Conversion method closely follows the NFA simulation algorithm
- Instead of simulating, we can collect those NFA states that behave identically on the same input
- Group this set of states to form one state in the DFA
Example: subset construction
ε-closure(q_0)
move(ε-closure(q_0), 0)
\(\varepsilon\text{-closure}(\text{move}(\varepsilon\text{-closure}(q_0), 0)) \)
move(ε-closure(q_0), 1)
\[\varepsilon\text{-closure}(\text{move}(\varepsilon\text{-closure}(q_0), 1))\]
Subset Construction

add ε-closure(q_0) to $Dstates$ unmarked

while \exists unmarked $T \in Dstates$ do begin
mark T;
for each symbol c do begin
 $U := \varepsilon$-closure($move(T, c)$);
 if $U \notin Dstates$ then
 add U to $Dstates$ unmarked
 $Dtrans[d, c] := U$;
end
end
Subset Construction

states[0] = \textbf{\textit{\varepsilon-closure}}(\{q_0\})
p = j = 0
\textbf{while} j \leq p \textbf{do begin}
 \textbf{for each symbol} c \textbf{do begin}
 e = \textbf{DFAedge}(\text{states}[j], c)
 \textbf{if} e = \text{states}[i] \textbf{for some} i \leq p
 \textbf{then} Dtrans[j, c] = i
 \textbf{else} p = p+1
 \text{states}[p] = e
 Dtrans[j, c] = p
 \textbf{end}
 j = j + 1
\textbf{end}
DFA (partial)

[1, 2, 3, 4, 6, 9, 12]

0

[3, 4, 5, 6, 8, 9, 10, 13, 14]

1

[3, 4, 6, 7, 8, 9]
DFA for \(((0|1)^*00)|0\)
Minimization of DFAs

[1, 2, 3, 4, 6, 9, 12]

[3, 4, 6, 9, 10]

[3, 4, 5, 6, 8, 9, 10, 11, 14]

[3, 4, 5, 6, 8, 9, 10]
Minimization of DFAs
NFA to DFA

• Subset construction converts NFA to DFA
• Complexity:
 – For FSAs, we measure complexity in terms of initial cost (creating the automaton) and per string cost
 – Let r be the length of the regexp and n be the length of the input string
 – NFA, Initial cost: $O(r)$; Per string: $O(rn)$
 – DFA, Initial cost: $O(r^2s)$; Per string: $O(n)$
 – DFA, common case, $s = r$, but worst case $s = 2^r$
NFA to DFA

• A regexp of size \(r \) can become a \(2^r \) state DFA, an exponential increase in complexity

 – Try the subset construction on NFA built for the regexp \(A^*aA^{n-1} \) where \(A \) is the regexp \((a|b)\)

• Note that the NFA for regexp of size \(r \) will have \(r \) states

• Minimization can reduce the number of states

• But minimization requires determinization
NFA to DFA
NFA to DFA
NFA to DFA

$2^5 = 32$ states
NFA vs. DFA in the wild

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFA</td>
<td>awk (most versions), egrep (most versions), flex, lex, MySQL, Procmail</td>
</tr>
<tr>
<td>Traditional NFA</td>
<td>GNU Emacs, Java, grep (most versions), less, more, .NET languages, PCRE library, Perl, PHP (pcre routines), Python, Ruby, sed (most versions), vi</td>
</tr>
<tr>
<td>POSIX NFA</td>
<td>mawk, MKS utilities, GNU Emacs (when requested)</td>
</tr>
<tr>
<td>Hybrid NFA/DFA</td>
<td>GNU awk, GNU grep/egrep, Tcl</td>
</tr>
</tbody>
</table>
Extensions to Regular Expressions

• Most modern regexp implementations provide extensions:
 – matching groups; \1 refers to the string matched by the first grouping (), \2 to the second match, etc.,
 • e.g. ([a-z]+)\1 which matches abab where \1=ab
 – match and replace operations,
 • e.g. s/([a-z]+)/\1\1/g which changes ab into abab where \1=ab
• These extensions are no longer “regular”. In fact, extended regexp matching is NP-hard
 – Extended regular expressions (including POSIX and Perl) are called REGEX to distinguish from regexp (which are regular)
• In order to capture these difficult cases, the algorithms used even for simple regexp matching run in time exponential in the length of the input
Implementing a Lexical Analyzer
Lexical Analyzer using NFAs

- For each token convert its regexp into a DFA or NFA
- Create a new start state and create a transition on ε to the start state of the automaton for each token
- For input $i_1, i_2, ..., i_n$ run NFA simulation which returns some final states (each final state indicates a token)
- If no final state is reached then raise an error
- Pick the final state (token) that has the longest match in the input,
 - e.g. prefer DFA #8 over all others because it read the input until i_{30} and none of the other DFAs reached i_{30}
 - If two DFAs reach the same input character then pick the one that is listed first in the ordered list
Lexical Analysis using NFAs

TOKEN_A = a

TOKEN_B = abb

TOKEN_C = a*b+
Lexical Analysis using NFAs

TOKEN_A = a

TOKEN_B = abb

TOKEN_C = a*b+

Input: aaba

TOKEN_A matches 0,1

TOKEN_B matches 0,3

TOKEN_C matches 0,3

2012-11-01
Lexical Analysis using NFAs

TOKEN_A = a

TOKEN_B = abb

TOKEN_C = a*b+

Input: aaba

Output:
TOKEN_C aab [0,3]
TOKEN_A a [3,4]
Lexical Analyzer using DFAs

• Each token is defined using a regexp r_i
• Merge all regexps into one big regexp
 – $R = (r_1 | r_2 | \ldots | r_n)$
• Convert R to an NFA, then DFA, then minimize
 – remember orig NFA final states with each DFA state
Lexical Analyzer using DFAs

• The DFA recognizer has to find the longest leftmost match for a token
 – continue matching and report the last final state reached once DFA simulation cannot continue
 – e.g. longest match: `<print>` and not `<pr>`, `<int>`
 – e.g. leftmost match: for input string `aabaaaaaabb` the regexp `a*b` will match `aab` and not `aaaaaabb`

• If two patterns match the same token, pick the one that was listed earlier in `R`
 – e.g. prefer final state (in the original NFA) of `r_2` over `r_3`
Lookahead operator

• Implementing r_1/r_2 : match r_1 when followed by r_2
• e.g. $a*b+/a*c$ accepts a string bac but not abd
• The lexical analyzer matches $r_1\varepsilon r_2$ up to position q in the input
• But remembers the position p in the input where r_1 matched but not r_2
• Reset to start state and start from position p
Summary

• Token ⇒ Pattern
• Pattern ⇒ Regular Expression
• Regular Expression ⇒ NFA
 – Thompson’s Rules
• NFA ⇒ DFA
 – Subset construction
• DFA ⇒ minimal DFA
 – Minimization
⇒ Lexical Analyzer (multiple patterns)
Extra Slides
Efficient data-structures for DFAs
Implementing DFAs

- 2D array storing the transition table
- Adjacency list, more space efficient but slower
- Merge two ideas: array structures used for sparse tables like DFA transition tables
 - base & next arrays: Tarjan and Yao, 1979
 - Dragon book (default+base & next+check)
Implementing DFAs

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Implementing DFAs

nextstate(s, x) :
L := base[s] + x
return next[L] if check[L] eq s
Implementing DFAs

nextstate(s, x) :
L := base[s] + x
return next[L] if check[L] eq s
else return nextstate(default[s], x)

base

\[
\begin{array}{cccc}
0 & 1 & - & - \\
1 & 3 & - & - \\
2 & 0 & & 1 \\
\end{array}
\]

check

\[
\begin{array}{cccc}
- & 1 & - & 2 \\
- & 2 & 1 & 1 \\
- & 2 & 0 & 1 \\
0 & 1 & 2 & 3 \\
\end{array}
\]

next

\[
\begin{array}{cccccccc}
- & 1 & - & 2 & 1 & - & - & - \\
- & 2 & 1 & 1 & 2 & 1 & - & - \\
- & 2 & 0 & 1 & 0 & 1 & - & - \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & - \\
\end{array}
\]
Converting Regular Expressions directly into DFAs

This algorithm was first used by Al Aho in egrep, and used in awk, lex, flex
Regexp to DFA: \(((ab) | (ba))^{*}\)

```
{1,3}
(2,4)

* ε-node

{1,3}
(2,4)

{1}
(2)

{1,3,5}
(5)

{5}
5
(5)

{1}
(2)

{2}
(2) 2

{3}
(3) 3

{4}
(4) 4
```

```
firstpos = {}
lastpos = ()
```
Regexp to DFA: followpos

• $\text{followpos}(p)$ tells us which positions can follow a position p

• There are two rules that use the $\text{firstpos}()$ and $\text{lastpos}()$ information

\[
\begin{align*}
\text{followpos}(i) & += k, l \\
\text{followpos}(j) & += k, l
\end{align*}
\]

\[
\begin{align*}
\text{followpos}(i') & += k, l \\
\text{followpos}(j') & += k, l
\end{align*}
\]
Regexp to DFA: \(((ab) \mid (ba)) \)*#
Regexp to DFA: ((ab) | (ba)) * #

root=\{1,3,5\}
fp(1)=2
fp(3)=4
fp(2)=1,3,5
fp(4)=1,3,5

A: fp(5),# {},# E,#
B: fp(2),b \{1,3,5\},b A,b
C: fp(4),a \{1,3,5\},a A,a

1:a
2:b
3:b
4:a
5:#
Minimization of DFAs
Minimization of DFAs

- Algorithm for minimizing the number of states in a DFA
- Step 1: partition states into 2 groups: accepting and non-accepting
Minimization of DFAs

• Step 2: in each group, find a sub-group of states having property P

• P: The states have transitions on each symbol (in the alphabet) to the same group

A, 0: blue
A, 1: yellow
E, 0: blue
E, 1: yellow
D, 0: yellow
D, 1: yellow
B, 0: blue
B, 1: yellow
C, 0: blue
C, 1: yellow
Minimization of DFAs

- Step 3: if a sub-group does not obey P split up the group into a separate group
- Go back to step 2. If no further sub-groups emerge then continue to step 4

A, 0: blue
A, 1: green
E, 0: blue
E, 1: green
D, 0: yellow
D, 1: green

B, 0: blue
B, 1: green
C, 0: blue
C, 1: green
Minimization of DFAs

- Step 4: each group becomes a state in the minimized DFA
- Transitions to individual states are mapped to a single state representing the group of states
Converting an NFA into a Regular Expression
NFA to RegExp

What is the regular expression for this NFA?
NFA to RegExp

- $A = aB$
- $B = bD | bC$
- $D = aB | \varepsilon$
- $C = aD$
NFA to RegExp

• Three steps in the algorithm (apply in any order):
 1. Substitution: for B = X pick every A = B | T and replace to get A = X | T
 2. Factoring: (R S) | (R T) = R (S | T) and (R T) | (S T) = (R | S) T
 3. Arden's Rule: For any set of strings S and T, the equation X = (S X) | T has X = (S*) T as a solution.
NFA to RegExp

- $A = a \; B$
 $B = b \; D \; | \; b \; C$
 $D = a \; B \; | \; \varepsilon$
 $C = a \; D$

- Substitute:
 $A = a \; B$
 $B = b \; D \; | \; b \; a \; D$
 $D = a \; B \; | \; \varepsilon$

- Factor:
 $A = a \; B$
 $B = (b \; | \; b \; a) \; D$
 $D = a \; B \; | \; \varepsilon$

- Substitute:
 $A = a \; (b \; | \; b \; a) \; D$
 $D = a \; (b \; | \; b \; a) \; D \; | \; \varepsilon$
NFA to RegExp

\[A = a (b \mid b a) D \]
\[D = a (b \mid b a) D \mid \varepsilon \]

• Factor:
\[A = (a b \mid a b a) D \]
\[D = (a b \mid a b a) D \mid \varepsilon \]

• Arden:
\[A = (a b \mid a b a) D \]
\[D = (a b \mid a b a)^* \varepsilon \]

• Remove epsilon:
\[A = (a b \mid a b a) D \]
\[D = (a b \mid a b a)^* \]

• Substitute:
\[A = (a b \mid a b a) \]
\[(a b \mid a b a)^* \]

• Simplify:
\[A = (a b \mid a b a)^+ \]
NFA to Regexp using GNFAs

Generalized NFA: transition function takes state and regexp and returns a set of states

Algorithm:
1. Add new start & accept state
2. For each state s: rip state s creating GNFA, consider each state i and j adjacent to s
3. Return regexp from start to accept state
NFA to Regexp using GNFAs

\begin{align*}
1 & \xrightarrow{a} 2 \\
2 & \xrightarrow{b} a, b \\
2 & \xrightarrow{a, b} 1 \\
1 & \xrightarrow{a} a \\
1 & \xrightarrow{b} b \\
a & \xrightarrow{a} 2 \\
2 & \xrightarrow{\varepsilon} 2 \\
2 & \xrightarrow{a, b} 1 \\
1 & \xrightarrow{a} a \\
1 & \xrightarrow{\varepsilon} 1 \\
s & \xrightarrow{\varepsilon} 1 \\
s & \xrightarrow{b(alb)^*} a \\
s & \xrightarrow{a* b(alb)^*} a
\end{align*}
NFA to Regexp using GNFAs

Rip states 1, 2, 3 in that order, and we get: (a(aalb)*ablb) ((bala)(aalb)*ablbb)*((bala)(aalb)*|ε)la(aalb)*