CMPT 379
Compilers

Anoop Sarkar
http://www.cs.sfu.ca/~anoop
Code Optimization

• There is no fully optimizing compiler O

• Let’s assume O exists: it takes a program P and produces output $\text{Opt}(P)$ which is the smallest possible

• Imagine a program Q that produces no output and never terminates, then $\text{Opt}(Q)$ could be: $L1$: goto $L1$

• Then to check if a program P never terminates on some inputs, check if $\text{Opt}(P(i))$ is equal to $\text{Opt}(Q) = \text{Solves the Halting Problem}$

• Full Employment Theorem for Compiler Writers, see Rice(1953)
Optimizations

• Non-Optimizations
• Correctness of optimizations
 – Optimizations must not change the meaning of the program
• Types of optimizations
 – Local optimizations
 – Global dataflow analysis for optimization
 – Static Single Assignment (SSA) Form
• Amdahl’s Law
Non-Optimizations

```c
enum { GOOD, BAD };
extern int test_condition();

void check()
{
    int rc;
    rc = test_condition();
    if (rc != GOOD) {
        exit(rc);
    }
}
```

Which version of check runs faster?
Types of Optimizations

• High-level optimizations
 – function inlining

• Machine-dependent optimizations
 – e.g., peephole optimizations, instruction scheduling

• Local optimizations or Transformations
 – within basic block
Types of Optimizations

• Global optimizations or Data flow Analysis
 – across basic blocks
 – within one procedure (intraprocedural)
 – whole program (interprocedural)
 – pointers (alias analysis)
Maintaining Correctness

• What does this program output?

3

Not:

$ decafcc byzero.decaf

Floating exception

int main() {
 int x;
 if (false) {
 x = 3/(3-3);
 } else {
 x = 3;
 }
 print_int(x);
}
Peephole Optimization

• Redundant instruction elimination
 – If two instructions perform that same function and are in the same basic block, remove one
 – Redundant loads and stores
 li $t0, 3
 li $t0, 4
 – Remove unreachable code
 li $t0, 3
 goto L2
 ... (all of this code until next label can be removed)
Peephole Optimization

• Flow control optimization
 goto L1
 L1: goto L2
• Algebraic simplification
• Reduction in strength
 – Use faster instructions whenever possible
• Use of Machine Idioms
• Filling delay slots
Constant folding & propagation

• Constant folding
 – compute expressions with known values at compile time

• Constant propagation
 – if constant assigned to variable, replace uses of variable with constant unless variable is reassigned
Constant folding & propagation

- Copy Propagation

```
a := d + e
b := d + e
c := d + e
t := d + e
```

```
t := d + e
a := t
b := t
c := t
```
Transformations

- Structure preserving transformations
- Common subexpression elimination

\[
a := b + c\\
b := a - d\\
c := b + c\\
d := a - d \ (\Rightarrow b)
\]
Transformations

• Dead-code elimination (combines copy propagation with removal of unreachable code)

```plaintext
if (debug) { f(); } /* debug := false (as a constant) */
if (false) { f(); } /* constant folding */
using deadcode elimination, code for f() is removed
x := t3
    x := t3
    t4 := x  becomes  t4 := t3
```
Transformations

• Renaming temporary variables

 \[t_1 := b+c \] can be changed to \[t_2 := b+c \]
 replace all instances of \[t_1 \] with \[t_2 \]

• Interchange of statements

 \[t_1 := b+c \quad \text{and} \quad t_2 := x+y \]
 \[t_2 := x+y \] can be converted to \[t_1 := b+c \]
Transformations

• Algebraic transformations
 \[d := a + 0 \quad (\Rightarrow a) \]
 \[d := d \times 1 \quad (\Rightarrow \text{eliminate}) \]

• Reduction of strength
 \[d := a \times^2 \quad (\Rightarrow a \times a) \]
int main() {
 extern int f(int);
 int i;
 int *a;
 for (i = 0;
 i < 10;
 i = i + 1)
 {
 a[i] = f(i);
 }
}
Control Flow Graph in TAC

main:
 i = 0
L0:
 t1 = 10
 t2 = i < t1
 ifFalse t2 Goto L1
 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0
L1:
 return

Entry
i = 0
definition/gen
L0:
t1 = 10
t2 = i < t1
ifFalse t2 goto L1
reaches
t3 = 4
t4 = t3 * i
t5 = a + t4
param i
t6 = call f, 1
pop 4
*(t5) = t6
reaches
t7 = 1
i = i + t7
goto L0
kill
Exit
SSA Form

• *def-use* chains keep track of where variables were defined and where they were used

• Consider the case where each variable has only one definition in the intermediate representation

• One static definition, accessed many times

• Static Single Assignment Form (SSA)
SSA Form

• SSA is useful because
 – Dataflow analysis and optimization is simpler when each variable has only one definition
 – If a variable has N uses and M definitions (which use N+M instructions) it takes N*M to represent def-use chains
 – Complexity is the same for SSA but in practice it is usually linear in number of definitions
 – SSA simplifies the register interference graph
SSA Form

• Original Program

 a := x + y
 b := a - 1
 a := y + b
 b := x * 4
 a := a + b

• SSA Form

 a1 := x + y
 b1 := a1 - 1
 a2 := y + b1
 b2 := x * 4
 a3 := a2 + b2

what about conditional branches?
SSA Form

1: \(b := M[x] \)
 \(a := 0 \)

2: if \(b < 4 \)

3: \(a := b \)

4: \(c := a+b \)

1: \(b1 := M[x1] \)
 \(a1 := 0 \)

2: if \(b1 < 4 \)

3: \(a2 := b1 \)

4: \(a3 := \phi(a2, a1) \)
 \(c1 := a3 + b1 \)
Edge-split SSA Form

1: \(b := M[x] \)
 \(a := 0 \)

2: if \(b < 4 \)

3: \(a := b \)

4: \(c := a + b \)

Unique Successor & Unique Predecessor

1: \(b1 := M[x1] \)
 \(a1 := 0 \)

2: if \(b1 < 4 \)

3: \(a2 := b1 \)

4: \(a3 := \phi (a2, a1) \)
 \(c1 := a3 + b1 \)

5:
SSA Form

• Conversion from a Control Flow Graph (created from TAC) into SSA Form is not trivial

• SSA creation algorithms:
 – Original algorithm by Cytron et al. 1986
 – Lengauer-Tarjan algorithm (see the Tiger book by Andrew W. Appel for more details)
 – Harel algorithm
Conversion to SSA Form

• Simple idea: add a \(\phi \) function for every variable at a join point
• A join point is any node in the control-flow graph with more than one predecessor
• But: this is wasteful and unnecessary.
Conversion to SSA

1: a := 0

2: b := a + 1
 c := c + b
 a := b * 2
 if a < N
 3: return c

b1 is never used, stmt can be deleted

1: a1 := 0

2: a3 := φ (a2, a1)
 b1 := φ (b0, b2)
 c2 := φ (c0, c1)
 b2 := a3 + 1
 c1 := c2 + b2
 a2 := b2 * 2
 if a2 < N
 3: return c1
Conversion to SSA

1: \(a := 0 \)

2: \(b := a + 1 \)
 \(c := c + b \)
 \(a := b \times 2 \)
 if \(a < N \)
 return \(c \)

b2 changes in each loop. SSA is not functional programming!
Dominance Relation

- X dominates Y if every path from the start node to Y goes through X
- $D(X)$ is the set of nodes that X dominates
- X strictly dominates Y if X dominates Y and $X \neq Y$
Dominance Relation

D(5)={6,7,8}

5 strictly dominates 6, 7, 8
Dominance Relation

D(5)={6,7,8}

5 strictly dominates 6, 7, 8
Dominance Property of SSA

• Essential property of SSA form is the definition of a variable must *dominate* use of the variable:
 – If X is used in a φ function in block n, then definition of X dominates every predecessor of n
 – If X is used in a non-φ statement in block n, then the definition of X dominates n.
Dominance Frontier

• X strictly dominates Y if X dominates Y and X ≠ Y

• Dominance Frontier (DF) of node X is the set of all nodes Y such that:
 – X dominates a predecessor of Y, AND
 – X does not strictly dominate Y
Dominance Frontier

\[D(5) = \{6, 7, 8\} \]

\[S(6) = \{4, 8\} \]

\[S(7) = \{8, 12\} \]

\[S(8) = \{5, 13\} \]

\[DF(5) = \{4, 12, 5, 13\} \]
Dominance Frontier

• Algorithm to compute DF(X):
 – Local(X) := set of successors of X who do not immediately dominate X
 – Up(X) := set of nodes in DF(X) that are not dominated by X’s immediate dominator.
 – DF(X) := Union of Local(X) & (Union of Up(K) for all K that are children of X)
Dominance Frontier

• ComputeDF(X):

 $S := \{\} \quad // \text{empty set}$

 For each node Y in Successor(X):

 If Y is not immediately dominating X:

 $S := S + \{Y\} \quad // \text{this is Local}(X), + \text{means union}$

 For each child K of X in D(X): // X dominates K

 For each element Y in ComputeDF(K):

 If X does not dominate Y,

 $S := S + \{Y\} \quad // \text{this is Up}(X)$

 $DF(X) = S$
Dominance Frontier

• Dominance Frontier Criterion
 – If node X contains definition of some variable a, then any node Y in the DF(X) needs a ϕ function for a.

• Iterated Dominance Frontier
 – Since a ϕ function is itself a definition of a new variable, we must iterate the DF criterion until no nodes in the CFG need a ϕ function.
Placing ϕ Functions

1: $V := _; W := _$

2:

3: $V := _$

4:

5: $W := _$

6:

7:

DF(3) = \{7\}

Empty boxes indicate uses of variables V, W
Placing ϕ Functions

1: V:=_; W:=_

2:

3: V:=_

4:

5: W:=_

6:

7: V:= ϕ(V,V)

DF(3)={7}

DF(5)={6}
Placing ϕ Functions

1: $V:=_;$ $W:=_$$\quad$ $DF(3)=\{7\}$

2:

3: $V:=_$$\quad$ $DF(5)=\{6\}$

4:

5: $W:=_$$\quad$ 6: $W:=\phi(W,W)$

7: $V:=\phi(V,V)$
Placing ϕ Functions

1: $V:=_; W:=_$

2:

3: $V:=_$

4:

5: $W:=_$

6: $W:= \phi(W,W)$

7: $V:= \phi(V,V); W:= \phi(W,W)$

DF(6)={7}
Rename Variables

1: V1:=_; W1:=_
2:
3: V2:=_
4:
5: W2:=_
6: W3:= φ(W1,W2)
7: V3:= φ(V1,V2);
 W4:= φ(W1,W3)

DF(6)={7}
Converting to SSA Form

Program

i:=1
j:=1
k:=0
while k<100:
 if j < 20:
 j:=i
 k:=k+1
 else:
 j:=k
 k:=k+1
return j

Control Flow Graph
Converting to SSA Form

Control Flow Graph

1: i := 1 j := 1
 k := 0
2: if k < 100
3: if j < 20
4: return j
5: j := i
 k := k+1
6: j := k
 k := k+1
7:

Dominance Relations

- D(1) = {2,3,4,5,6,7}
- D(2) = {3,4,5,6,7}
- D(3) = {5,6,7}
- D(4) = {}
- D(5) = {}
- D(6) = {}
- D(7) = {}
Converting to SSA

1: i := 1 j := 1 k := 0

2: if k < 100

3: if j < 20

4: return j

5: j := i
 k := k+1

6: j := k
 k := k+1

7:

Control Flow Graph

Dominator Tree

Dominance Relations

• D(1) = \{2,3,4,5,6,7\}
• D(2) = \{3,4,5,6,7\}
• D(3) = \{5,6,7\}
• D(4) = \{\}
• D(5) = \{\}
• D(6) = \{\}
• D(7) = \{\}
Converting to SSA

Control Flow Graph

1: i := 1 j := 1
 k := 0

2: if k < 100

3: if j < 20

4: return j

5: j := i
 k := k+1

6: j := k
 k := k+1

7:

Dominance Relations

- D(1) = {2,3,4,5,6,7}
- D(2) = {3,4,5,6,7}
- D(3) = {5,6,7}
- D(4) = {}
- D(5) = {}
- D(6) = {}
- D(7) = {}

Dominance Frontier

- DF(1) = {}
- DF(2) = {2}
- DF(3) = {2}
- DF(4) = {}
- DF(5) = {7}
- DF(6) = {7}
- DF(7) = {2}
Converting to SSA Form

1: i := 1 j := 1 k := 0

2: if k2 < 100

3: if j < 20

4: return j

5: j := i k := k+1

6: j := k k := k+1

7:

Variable j in 5
DF(5) = { 7 }
Converting to SSA Form

1: i := 1 j := 1 k := 0

2:
 if k2 < 100

3: if j < 20

4: return j

5: j := i k := k+1

6: j := k k := k+1

7: j := φ(j, j)

Variable j in 5 DF(5) = { 7 }

Variable j in 7 DF(7) = { 2 }
Converting to SSA Form

1: i := 1 j := 1 k := 0

2: j := \phi(j, j)
 if k2 < 100

3: if j < 20

4: return j

5: j := i k := k+1

6: j := k k := k+1

7: j := \phi(j, j)
Converting to SSA Form

1: i := 1 j := 1
k := 0

2: j := \phi(j, j)
k := \phi(k, k)
if k2 < 100

3: if j < 20

4: return j

5: j := i
k := k+1

6: j := k
k := k+1

7: j := \phi(j, j)
k := \phi(k, k)

Variable k in 5
DF(5) = { 7 }

Variable k in 7
DF(7) = { 2 }

Variable k in 6
DF(6) = { 7 }
Converting to SSA Form

1: i1 := 1 j1 := 1 k1 := 0

2: j2 := \phi(j4, j1)
k2 := \phi(k4, k1)
if k2 < 100

3: if j2 < 20

4: return j2

5: j3 := i1
k3 := k2+1

6: j5 := k2
k5 := k2+1

7: j4 := \phi(j3, j5)
k4 := \phi(k3, k5)
Optimizations using SSA

• SSA form contains statements, basic blocks and variables

• Dead-code elimination
 – if there is a variable \(v \) with no uses and def of \(v \) has no side-effects, delete statement defining \(v \)
 – if \(z := \phi(x, y) \) then eliminate this stmt if no defs for \(x,y \)
Optimizations using SSA

- Constant Propagation
 - if $v := c$ for some constant c then replace v with c for all uses of v
 - $v := \phi (c_1, c_2, ..., c_n)$ where all c_i are equal to c can be replaced by $v := c$
Optimizations using SSA

• Conditional Constant Propagation
 – In previous flow graph, is \(j \) always equal to 1?
 – If \(j = 1 \) always, then block 6 will never execute and so \(j := i \) and \(j := 1 \) always
 – If \(j > 20 \) then block 6 will execute, and \(j := k \) will be executed so that eventually \(j > 20 \)
 – Which will happen? Using SSA we can find the answer.
Optimizations using SSA

1: \(i_1 := 1 \) \(j_1 := 1 \)
 \(k_1 := 0 \)

2: \(j_2 := \phi(j_4, j_1) \)
 \(k_2 := \phi(k_4, k_1) \)
 if \(k_2 < 100 \)

3: if \(j_2 < 20 \)

4: return \(j_2 \)

5: \(j_3 := i_1 \)
 \(k_3 := k_2 + 1 \)

6: \(j_5 := k_2 \)
 \(k_5 := k_2 + 1 \)

7: \(j_4 := \phi(j_3, j_5) \)
 \(k_4 := \phi(k_3, k_5) \)
Optimizations using SSA

1: \(i_1 := 1\) \(j_1 := 1\) \(k_1 := 0\)

2: \(j_2 := \phi(j_4, 1)\)
 \(k_2 := \phi(k_4, 0)\)
 if \(k_2 < 100\)

3: if \(j_2 < 20\)

4: return \(j_2\)

5: \(j_3 := 1\)
 \(k_3 := k_2 + 1\)

6: \(j_5 := k_2\)
 \(k_5 := k_2 + 1\)

7: \(j_4 := \phi(j_3, k_2)\)
 \(k_4 := \phi(k_3, k_5)\)
Optimizations using SSA

1: i1 := 1 j1 := 1 k1 := 0
2: j2 := φ(j4, 1) k2 := φ(k4, 0) if k2 < 100
3: if j2 < 20
4: return j2
5: j3 := 1 k3 := k2+1
6: k5 := k2+1
7: j4 := φ(j3, k2) k4 := φ(k3, k5)
Optimizations using SSA

1: i1 := 1 j1 := 1
k1 := 0

2:
j2 := φ(j4, 1)
k2 := φ(k4, 0)
if k2 < 100

3: if j2 < 20

4: return j2

5: j3 := 1
k3 := k2+1

6:
k5 := k2+1

7:
j4 := φ(1, k2)
k4 := φ(k3,k5)
Optimizations using SSA

1: \texttt{i1 := 1 \ j1 := 1}
\texttt{k1 := 0}

2: \texttt{j2 := \phi(j4, 1)}
\texttt{k2 := \phi(k4, 0)}
\texttt{if k2 < 100}

3: \texttt{if j2 < 20}

4: \texttt{return j2}

5: \texttt{j3 := 1}
\texttt{k3 := k2+1}

7: \texttt{j4 := \phi(1)}
\texttt{k4 := \phi(k3)}
Optimizations using SSA

1: i1 := 1 j1 := 1 k1 := 0

2: j2 := φ(1, 1) k2 := φ(k4, 0)
 if k2 < 100

3: if j2 < 20

4: return j2

5: j3 := 1 k3 := k2+1

7: k4 := φ(k3)
Optimizations using SSA

1: i1 := 1 j1 := 1 k1 := 0

2:
 k2 := φ(k4, 0)
 if k2 < 100

3: if 1 < 20

4: return 1

5:
 k3 := k2+1

6:
 k4 := φ(k3)
Optimizations using SSA

1:

2: \(k_2 := \phi(k_4, 0) \) if \(k_2 < 100 \)

3:

4: return 1

5: \(k_3 := k_2 + 1 \)

7: \(k_4 := \phi(k_3) \)
Optimizations using SSA

1:

2: \(k_2 := \phi(k_3, 0) \) if \(k_2 < 100 \)

5: \(k_3 := k_2 + 1 \)

4: return 1
Optimizations using SSA

- Arrays, Pointers and Memory
 - For more complex programs, we need *dependencies*: how does statement B depend on statement A?
 - **Read after write**: A defines variable v, then B uses v
 - **Write after write**: A defines v, then B defines v
 - **Write after read**: A uses v, then B defines v
 - **Control**: A controls whether B executes
Optimizations using SSA

• Memory dependence
 \[M[i] := 4 \]
 \[x := M[j] \]
 \[M[k] := j \]

• We cannot tell if \(i, j, k \) are all the same value which makes any optimization difficult

• Similar problems with Control dependence

• SSA does not offer an easy solution to these problems
More on Optimization

• Advanced Compiler Design and Implementation by Steven S. Muchnick

• Control Flow Analysis
• Data Flow Analysis
• Dependence Analysis
• Alias Analysis
• Early Optimizations
• Redundancy Elimination

• Loop Optimizations
• Procedure Optimizations
• Code Scheduling (pipelining)
• Low-level Optimizations
• Interprocedural Analysis
• Memory Hierarchy
Amdahl’s Law

- Speedup_{total} = ((1 - Time_{Fractionoptimized}) + Time_{Fractionoptimized}/Speedup_{optimized})^{-1}

- Optimize the common case, 90/10 rule
- Requires quantitative approach
 - Profiling + Benchmarking
- Problem: Compiler writer doesn’t know the application beforehand
Summary

- Optimizations can improve speed, while maintaining correctness
- Various early optimization steps
- Static Single-Assignment Form (SSA)
- Optimization using SSA Form