CMPT 379
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop
Regular Expressions are Trees
Regular Expressions: Definition

• Note that operators apply recursively and these applications can be ambiguous
 – E.g. is aa|bc equal to a(a|b)c or ((aa)|b)c?

• Avoid such cases of ambiguity - provide explicit arguments for each regexp operator
 – For convenience, for examples on this page, let us use the symbol ‘⋅’ to denote the operator for concatenation

• Remove ambiguity with an explicit regexp tree
Regular Expressions: Definition

- Remove ambiguity with an explicit regexp tree
 - `a(a|b)c` is written as
    ```
    (\cdot(\cdot a (\mid ab)) c)
    ```
 - or in postfix: `aab \cdot c`

- `((aa)\mid b)c` is written as
  ```
  (\cdot (\mid (\cdot aa)b)c)
  ```
 - or in postfix: `aa \cdot b \mid c`

- Does the order of concatenation matter?
Equivalence of Regexps

- \((R|S)|T\) == \(R|(S|T)\) == \(R|S|T\)
- \((RS)T\) == \(R(ST)\)
- \((R|S)\) == \((S|R)\)
- \(R^*R^*\) == \((R^*)^*\) == \(R^*\) == \(RR^*\) | \(\varepsilon\)
- \(R^{**}\) == \(R^*\)
- \((R|S)T\) = \(RT|ST\)

- \(R(S|T)\) == \(RS \mid RT\)
- \((R|S)^*\) == \((R*S^*)^*\) == \((R*S)^*R^*\) == \((R^*|S^*)^*\)
- \(RR^*\) == \(R^*R\)
- \((RS)^*R\) == \(R(SR)^*\)
- \(R = R|R = R\varepsilon\)
Equivalence of Regexps

- $0(10)^*1|(01)^*$
- $(01)(01)^*|(01)^*$
- $(01)(01)^*|(01)(01)^*|\epsilon$
- $(01)(01)^*|\epsilon$
- $(01)^*$

- $(RS)^*R == R(SR)^*$
- $RS == (RS)$
- $R^* == RR^*|\epsilon$
- $R == R|R$
- $R^* == RR^*|\epsilon$