CMPT 379
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop
Matching Patterns using Non-deterministic Automata
(conversion from NFA to DFA)
Simulating NFAs

- Simulation == Given a NFA and input string, does the string match the pattern?
- Similar to DFA simulation
- But have to deal with ε transitions and multiple transitions on the same input
- Instead of one state, we have to consider sets of states
NFA to DFA Conversion

• Simulation implicitly converts NFA -> DFA
• Subset construction
• Idea: subsets of set of all NFA states are equivalent and become one DFA state
• Algorithm simulates movement through NFA
• Key problem: how to treat ε-transitions?
\(\varepsilon \)-Closure

- Start state: \(q_0 \)
- \(\varepsilon \)-closure(\(S \)): \(S \) is a set of states

\[
\begin{align*}
\text{initialize: } & S \leftarrow \{q_0\} \\
T & \leftarrow S \\
\text{repeat } & T' \leftarrow T \\
& T \leftarrow T' \cup \bigcup_{s \in T'} \text{move}(s, \varepsilon) \\
\text{until } & T = T'
\end{align*}
\]
\(\varepsilon \)-Closure (T: set of states)

push all states in T onto stack
initialize \(\varepsilon \)-closure(T) to T
while stack is not empty do begin
 pop t off stack
 for each state u with \(u \in \text{move}(t, \varepsilon) \) do
 if \(u \notin \varepsilon \)-closure(T) do begin
 add u to \(\varepsilon \)-closure(T)
push u onto stack
 end
end
NFA Simulation

• After computing the ε-closure move, we get a set of states

• On some input extend all these states to get a new set of states

\[\text{DFAedge}(T, c) = \varepsilon\text{-closure} \left(\bigcup_{q \in T} \text{move}(q, c) \right) \]
NFA Simulation

- \(\text{DFAedge}(T, c) = \epsilon\text{-closure}(\bigcup_{q \in T} \text{move}(q, c)) \)
- Start state: \(q_0 \)
- Input: \(c_1, \ldots, c_k \)

\[
T \leftarrow \epsilon\text{-closure}({q_0})
\]

\[
\text{for } i \leftarrow 1 \text{ to } k
\]

\[
T \leftarrow \text{DFAedge}(T, c_i)
\]
Conversion from NFA to DFA

• Conversion method closely follows the NFA simulation algorithm
• Instead of simulating, we can collect those NFA states that behave identically on the same input
• Group this set of states to form one state in the DFA
Example: subset construction
ε-closure(q_0)
move(ε-closure(q_0), 0)
\[\varepsilon\text{-closure}(\text{move}(\varepsilon\text{-closure}(q_0), 0)) \]

Diagram with states and transitions labeled with \(\varepsilon\) and 0.
move(ε-closure(q_0), 1)
\(\varepsilon\text{-closure}(\text{move}(\varepsilon\text{-closure}(q_0), 1)) \)
Subset Construction

add ε-closure(q_0) to $Dstates$ unmarked

while \exists unmarked $T \in Dstates$ do begin

mark T;

for each symbol c do begin

$U := \varepsilon$-closure$(\text{move}(T, c))$;

if $U \not\in Dstates$ then

add U to $Dstates$ unmarked

$Dtrans[d, c] := U$;

end

end

end
Subset Construction

states[0] = ε-closure($\{q_0\}$)
p = j = 0

while $j \leq p$ do begin
 for each symbol c do begin
 $e = \text{DFAedge}(\text{states}[j], c)$
 if $e = \text{states}[i]$ for some $i \leq p$
 then $\text{Dtrans}[j, c] = i$
 else $p = p+1$
 states[p] = e
 $\text{Dtrans}[j, c] = p$
 end
 $j = j + 1$
end
DFA (partial)

[1, 2, 3, 4, 6, 9, 12] 0 [3, 4, 5, 6, 8, 9, 10, 13, 14]

1 [3, 4, 6, 7, 8, 9]
DFA for \(((0|1)^*00)|0\)
Minimization of DFAs

- [1, 2, 3, 4, 6, 9, 12]
- [3, 4, 6, 7, 8, 9]
- [3, 4, 5, 6, 8, 9, 10]
- [3, 4, 5, 6, 8, 9, 10, 11, 14]

States with labels [1, 2, 3, 4, 6, 9, 12], [3, 4, 6, 7, 8, 9], and [3, 4, 5, 6, 8, 9, 10] are connected by transitions labeled 0 and 1.
Minimization of DFAs

[3, 4, 5, 6, 8, 9, 10, 11, 14]

[3, 4, 6, 7, 8, 9]

[3, 4, 5, 6, 8, 9, 10]