CMPT 379
Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop
Code Optimization

• There is no fully optimizing compiler O

• Let’s assume O exists: it takes a program P and produces output $\text{Opt}(P)$ which is the smallest possible

• Imagine a program Q that produces no output and never terminates, then $\text{Opt}(Q)$ could be:
 \[
 \text{L1: goto L1}
 \]

• Then to check if a program P never terminates on some inputs, check if $\text{Opt}(P(i))$ is equal to $\text{Opt}(Q) = \text{Solves the Halting Problem}$

• Full Employment Theorem for Compiler Writers, see Rice(1953)
Optimizations

• Non-Optimizations
• Correctness of optimizations
 – Optimizations must not change the meaning of the program
• Types of optimizations
 – Local optimizations
 – Global dataflow analysis for optimization
 – Static Single Assignment (SSA) Form
• Amdahl’s Law
Non-Optimizations

```c
enum { GOOD, BAD };
extern int test_condition();

void check() {
    int rc;
    rc = test_condition();
    if (rc != GOOD) {
        exit(rc);
    }
}
```

Which version of check runs faster?
Types of Optimizations

• High-level optimizations
 – function inlining

• Machine-dependent optimizations
 – e.g., peephole optimizations, instruction scheduling

• Local optimizations or Transformations
 – within basic block
Types of Optimizations

• Global optimizations or Data flow Analysis
 – across basic blocks
 – within one procedure (intraprocedural)
 – whole program (interprocedural)
 – pointers (alias analysis)
Maintaining Correctness

• What does this program output?

3

Not:

$ decafcc byzero.decaf

Floating exception

```c
int main() {
    int x;
    if (false) {
        x = 3/(3-3);
    } else {
        x = 3;
    }
    print_int( x);
}
```

branch delay slot (cf. load delay slot)
Peephole Optimization

• Redundant instruction elimination
 – If two instructions perform that same function and are in the same basic block, remove one
 – Redundant loads and stores
 li $t0, 3
 li $t0, 4
 – Remove unreachable code
 li $t0, 3
 goto L2
 ... (all of this code until next label can be removed)
Peephole Optimization

• Flow control optimization

goto L1

 L1: goto L2

• Algebraic simplification

• Reduction in strength
 – Use faster instructions whenever possible

• Use of Machine Idioms

• Filling delay slots
Constant folding & propagation

• Constant folding
 – compute expressions with known values at compile time

• Constant propagation
 – if constant assigned to variable, replace uses of variable with constant unless variable is reassigned
Constant folding & propagation

- Copy Propagation

```
a := d + e
b := d + e
c := d + e
t := d + e
```

```
t := d + e
a := t
```

```
t := d + e
b := t
```

```
c := t
```
Transformations

• Structure preserving transformations

• Common subexpression elimination

 \[
 a := b + c \\
 b := a - d \\
 c := b + c \\
 d := a - d \quad (\Rightarrow b)
 \]
Transformations

• Dead-code elimination (combines copy propagation with removal of unreachable code)

```c
if (debug) { f(); } /* debug := false (as a constant) */
if (false) { f(); } /* constant folding */
using deadcode elimination, code for f() is removed
x := t3               x := t3
```

t4 := x becomes t4 := t3
Transformations

• Renaming temporary variables
 \[t_1 := b+c \text{ can be changed to } t_2 := b+c \]
 replace all instances of \(t_1 \) with \(t_2 \)

• Interchange of statements
 \[t_1 := b+c \quad t_2 := x+y \]
 \[t_2 := x+y \text{ can be converted to } t_1 := b+c \]
Transformations

• Algebraic transformations
 \[d := a + 0 \quad (\Rightarrow a) \]
 \[d := d * 1 \quad (\Rightarrow \text{eliminate}) \]

• Reduction of strength
 \[d := a ** 2 \quad (\Rightarrow a * a) \]
int main() {
 extern int f(int);
 int i;
 int *a;
 for (i = 0;
 i < 10;
 i = i + 1)
 {
 a[i] = f(i);
 }
}
Control Flow Graph in TAC

main:
 i = 0
L0:
 t1 = 10
 t2 = i < t1
 ifFalse t2 Goto L1
 t3 = 4
 t4 = t3 * i
 t5 = a + t4
 param i
 t6 = call f, 1
 pop 4
 *(t5) = t6
 t7 = 1
 i = i + t7
 goto L0
L1:
 return

11/26/2013
SSA Form

• *def-use* chains keep track of where variables were defined and where they were used

• Consider the case where each variable has only one definition in the intermediate representation

• One static definition, accessed many times

• Static Single Assignment Form (SSA)
SSA Form

• SSA is useful because
 – Dataflow analysis and optimization is simpler when each variable has only one definition
 – If a variable has N uses and M definitions (which use N+M instructions) it takes N*M to represent def-use chains
 – Complexity is the same for SSA but in practice it is usually linear in number of definitions
 – SSA simplifies the register interference graph
SSA Form

- Original Program

 a := x + y
 b := a - 1
 a := y + b
 b := x * 4
 a := a + b

- SSA Form

 a1 := x + y
 b1 := a1 - 1
 a2 := y + b1
 b2 := x * 4
 a3 := a2 + b2

what about conditional branches?
SSA Form

1: b := M[x]
a := 0

2: if b < 4

3: a := b

4: c := a + b

1: b1 := M[x1]
a1 := 0

2: if b1 < 4

3: a2 := b1

4: a3 := \phi(a2, a1)
c1 := a3 + b1
Edge-split SSA Form

1: $b := M[x]$
 $a := 0$

2: if $b < 4$

3: $a := b$

4: $c := a + b$

1: $b1 := M[x1]$
 $a1 := 0$

2: if $b1 < 4$

3: $a2 := b1$

4: $a3 := \phi(a2, a1)$
 $c1 := a3 + b1$

5: Unique Successor & Unique Predecessor
SSA Form

• Conversion from a Control Flow Graph (created from TAC) into SSA Form is not trivial

• SSA creation algorithms:
 – Original algorithm by Cytron et al. 1986
 – Lengauer-Tarjan algorithm (see the Tiger book by Andrew W. Appel for more details)
 – Harel algorithm
Conversion to SSA Form

• Simple idea: add a ϕ function for every variable at a join point
• A join point is any node in the control-flow graph with more than one predecessor
• But: this is wasteful and unnecessary.
Conversion to SSA

1: \(a := 0\)

2: \(b := a + 1\)
 \(c := c + b\)
 \(a := b \times 2\)
 if \(a < N\)

3: return \(c\)

1: \(a1 := 0\)

2: \(a3 := \phi(a2, a1)\)
 \(b1 := \phi(b0, b2)\)
 \(c2 := \phi(c0, c1)\)
 \(b2 := a3 + 1\)
 \(c1 := c2 + b2\)
 \(a2 := b2 \times 2\)
 if \(a2 < N\)

3: return \(c1\)

b1 is never used, stmt can be deleted
Conversion to SSA

1: \[a := 0\]
2: \[b := a + 1\]
 \[c := c + b\]
 \[a := b \times 2\]
 \[\text{if } a < N\]
3: \[\text{return } c\]

1: \[a1 := 0\]
2: \[a3 := \phi(a2, a1)\]
 \[b1 := \phi(b0, b2)\]
 \[c2 := \phi(c0, c1)\]
 \[b2 := a3 + 1\]
 \[c1 := c2 + b2\]
 \[a2 := b2 \times 2\]
 \[\text{if } a2 < N\]
3: \[\text{return } c1\]

b2 changes in each loop. SSA is **not** functional programming!
Dominance Relation

- X dominates Y if every path from the start node to Y goes through X
- $D(X)$ is the set of nodes that X dominates
- X strictly dominates Y if X dominates Y and $X \neq Y$
D(5)={6,7,8}

5 strictly dominates 6, 7, 8
Dominance Relation

\[D(5) = \{6, 7, 8\} \]

5 strictly dominates 6, 7, 8
Dominance Property of SSA

- Essential property of SSA form is the definition of a variable must dominate use of the variable:
 - If X is used in a ϕ function in block n, then definition of X dominates every predecessor of n
 - If X is used in a non-ϕ statement in block n, then the definition of X dominates n.
Dominance Frontier

• X strictly dominates Y if X dominates Y and X ≠ Y

• Dominance Frontier (DF) of node X is the set of all nodes Y such that:
 – X dominates a predecessor of Y, AND
 – X does not strictly dominate Y
Dominance Frontier

D(5)=\{6,7,8\}
S(6)=\{4,8\}
S(7)=\{8,12\}
S(8)=\{5,13\}

DF(5) = \{4,12,5,13\}
Dominance Frontier

• Algorithm to compute DF(X):
 – Local(X) := set of successors of X who do not immediately dominate X
 – Up(X) := set of nodes in DF(X) that are not dominated by X’s immediate dominator.
 – DF(X) := Union of Local(X) & (Union of Up(K) for all K that are children of X)
Dominance Frontier

• ComputeDF(X):

 $S := \{\} // \text{empty set}$

 For each node Y in Successor(X):

 If X is not strictly dominating Y:

 $S := S + \{Y\} // \text{this is Local}(X), + \text{means union}$

 For each child K of X in $D(X): // X$ dominates K

 For each element Y in ComputeDF(K):

 If X does not dominate Y,

 $S := S + \{Y\} // \text{this is Up}(X)$

 return $DF(X) := S$
Dominance Frontier

• Dominance Frontier Criterion
 – If node X contains definition of some variable a, then any node Y in the DF(X) needs a ϕ function for a.

• Iterated Dominance Frontier
 – Since a ϕ function is itself a definition of a new variable, we must iterate the DF criterion until no nodes in the CFG need a ϕ function.
Placing ϕ Functions

Empty boxes indicate *uses* of variables V, W

1: $V:=_; W:=_$

2:

3: $V:=_$

4:

5: $W:=_$

6:

7:

$DF(3)=\{7\}$
Placing ϕ Functions

1: $V := _; W := _$

2:

3: $V := _$

4:

5: $W := _$

6:

7: $V := \phi(V,V)$

$DF(3) = \{7\}$

$DF(5) = \{6\}$
Placing ϕ Functions

1: $V := _; W := _$

2:

3: $V := _$

4:

5: $W := _$

6: $W := \phi(W,W)$

7: $V := \phi(V,V)$

$D(F(3)) = \{7\}$

$D(F(5)) = \{6\}$
Placing ϕ Functions

1: $V:=_; W:=_\$

2: $\$

3: $V:=_$

4: $\$

5: $W:=_\$

6: $W:= \phi(W,W)\$

7: $V:= \phi(V,V); W:= \phi(W,W)\$

$DF(6)=\{7\}$
Rename Variables

1: \(V_1 := _; \ W_1 := _ \)

2:

3: \(V_2 := _ \)

4:

5: \(W_2 := _ \)

6: \(W_3 := \phi(W_1,W_2) \)

7: \(V_3 := \phi(V_1,V_2); \ W_4 := \phi(W_1,W_3) \)

DF(6)={7}
Converting to SSA Form

Program

i:=1
j:=1
k:=0
while k<100:
 if j < 20:
 j:=i
 k:=k+1
 else:
 j:=k
 k:=k+1
return j

Control Flow Graph

1: i := 1 j := 1
 k := 0

2: if k < 100

3: if j < 20

4: return j

5: j := i
 k := k+1

6: j := k
 k := k+1

7:
Converting to SSA Form

Control Flow Graph

1: \(i := 1 \quad j := 1 \quad k := 0 \)

2: if \(k < 100 \)

3: if \(j < 20 \)

4: return \(j \)

5: \(j := i \quad k := k+1 \)

6: \(j := k \quad k := k+1 \)

7:

Dominance Relations

- \(D(1) = \{2,3,4,5,6,7\} \)
- \(D(2) = \{3,4,5,6,7\} \)
- \(D(3) = \{5,6,7\} \)
- \(D(4) = \{\} \)
- \(D(5) = \{\} \)
- \(D(6) = \{\} \)
- \(D(7) = \{\} \)
Converting to SSA

Control Flow Graph

1: i := 1 j := 1
 k := 0

2: if k < 100

3: if j < 20

4: return j

5: j := i
 k := k+1

6: j := k
 k := k+1

7:

Dominator Tree

1:

2:

3: 4:

5: 6: 7:
Converting to SSA

Control Flow Graph

1: i := 1 j := 1 k := 0

2: if k < 100

3: if j < 20

5: j := i k := k+1

6: j := k k := k+1

4: return j

7:

Dominance Relations

• D(1) = {2,3,4,5,6,7}
• D(2) = {3,4,5,6,7}
• D(3) = {5,6,7}
• D(4) = {}
• D(5) = {}
• D(6) = {}
• D(7) = {}

Dominance Frontier

• DF(1) = {}
• DF(2) = {2}
• DF(3) = {2}
• DF(4) = {}
• DF(5) = {7}
• DF(6) = {7}
• DF(7) = {2}
Converting to SSA Form

1: i := 1 j := 1
 k := 0

2: if k2 < 100

3: if j < 20

4: return j

5: j := i
 k := k+1

6: j := k
 k := k+1

7:

Variable j in 5
DF(5) = { 7 }
Converting to SSA Form

1: i := 1 j := 1 k := 0
2: if k2 < 100
3: if j < 20
4: return j
5: j := i
 k := k+1
6: j := k
 k := k+1
7: j := \phi(j, j)

Variable j in 5
DF(5) = \{ 7 \}

Variable j in 7
DF(7) = \{ 2 \}
Converting to SSA Form

1: i := 1
 j := 1
 k := 0

2: j := \phi(j, j)
 if k2 < 100

3: if j < 20

4: return j

5: j := i
 k := k+1

6: j := k
 k := k+1

7: j := \phi(j, j)

Variable j in 5
DF(5) = \{ 7 \}

Variable j in 7
DF(7) = \{ 2 \}

Variable j in 6
DF(6) = \{ 7 \}
Converting to SSA Form

1: i := 1 j := 1 k := 0

2: j := φ(j, j)
k := φ(k,k)
if k2 < 100

3: if j < 20

4: return j

5: j := i
k := k+1

6: j := k
k := k+1

7: j := φ(j, j)
k := φ(k,k)

Variable k in 5
DF(5) = { 7 }

Variable k in 7
DF(7) = { 2 }

Variable k in 6
DF(6) = { 7 }
Converting to SSA Form

1: \(i_1 := 1 \) \(j_1 := 1 \)
 \(k_1 := 0 \)

2: \(j_2 := \phi(j_4, j_1) \)
 \(k_2 := \phi(k_4, k_1) \)
 if \(k_2 < 100 \)

3: if \(j_2 < 20 \)

4: return \(j_2 \)

5: \(j_3 := i_1 \)
 \(k_3 := k_2 + 1 \)

6: \(j_5 := k_2 \)
 \(k_5 := k_2 + 1 \)

7: \(j_4 := \phi(j_3, j_5) \)
 \(k_4 := \phi(k_3, k_5) \)
Optimizations using SSA

• SSA form contains statements, basic blocks and variables

• Dead-code elimination
 – if there is a variable v with no uses and def of v has no side-effects, delete statement defining v
 – if $z := \phi(x, y)$ then eliminate this stmt if no defs for x, y
Optimizations using SSA

• Constant Propagation
 – if $v := c$ for some constant c then replace v with c for all uses of v
 – $v := \phi (c_1, c_2, ..., c_n)$ where all c_i are equal to c can be replaced by $v := c$
Optimizations using SSA

• Conditional Constant Propagation
 – In previous flow graph, is j always equal to 1?
 – If j = 1 always, then block 6 will never execute and so j := i and j := 1 always
 – If j > 20 then block 6 will execute, and j := k will be executed so that eventually j > 20
 – Which will happen? Using SSA we can find the answer.
Optimizations using SSA

1: i1 := 1 j1 := 1
k1 := 0

2: j2 := \phi(j4, j1)
k2 := \phi(k4, k1)
if k2 < 100

3: if j2 < 20

4: return j2

5: j3 := i1
k3 := k2+1

6: j5 := k2
k5 := k2+1

7: j4 := \phi(j3, j5)
k4 := \phi(k3, k5)
Optimizations using SSA

1: \(i_1 := 1 \), \(j_1 := 1 \), \(k_1 := 0 \)

2: \(j_2 := \phi(j_4, 1) \), \(k_2 := \phi(k_4, 0) \), if \(k_2 < 100 \)

3: if \(j_2 < 20 \)

4: return \(j_2 \)

5: \(j_3 := 1 \), \(k_3 := k_2 + 1 \)

6: \(j_5 := k_2 \), \(k_5 := k_2 + 1 \)

7: \(j_4 := \phi(j_3, k_2) \), \(k_4 := \phi(k_3, k_5) \)
Optimizations using SSA

1: $i_1 := 1$ $j_1 := 1$
 $k_1 := 0$

2: $j_2 := \phi(j_4, 1)$
 $k_2 := \phi(k_4, 0)$
 if $k_2 < 100$

3: if $j_2 < 20$

4: return j_2

5: $j_3 := 1$
 $k_3 := k_2 + 1$

6: $k_5 := k_2 + 1$

7: $j_4 := \phi(j_3, k_2)$
 $k_4 := \phi(k_3, k_5)$
Optimizations using SSA

1: i1 := 1 j1 := 1 k1 := 0

2: j2 := \phi(j4, 1)
k2 := \phi(k4, 0)
if k2 < 100

3: if j2 < 20

4: return j2

5: j3 := 1
k3 := k2+1

6:
k5 := k2+1

7: j4 := \phi(1, k2)
k4 := \phi(k3,k5)
Optimizations using SSA

1: i1 := 1 j1 := 1 k1 := 0

2: j2 := φ(j4, 1)
 k2 := φ(k4, 0)
 if k2 < 100

3: if j2 < 20
4: return j2

5: j3 := 1
 k3 := k2+1

7: j4 := φ(1)
 k4 := φ(k3)
Optimizations using SSA

1: i1 := 1 j1 := 1
k1 := 0

2: j2 := φ(1, 1)
k2 := φ(k4, 0)
if k2 < 100

3: if j2 < 20

4: return j2

5: j3 := 1
k3 := k2+1

7:
k4 := φ(k3)
Optimizations using SSA

1: \(i_1 := 1 \quad j_1 := 1 \quad k_1 := 0 \)

2: \[k_2 := \phi(k_4, 0) \]
 if \(k_2 < 100 \)

3: if \(1 < 20 \)

4: return 1

5: \(k_3 := k_2 + 1 \)

7: \(k_4 := \phi(k_3) \)
Optimizations using SSA

1:

2: \(k_2 := \phi(k_4, 0) \)
 if \(k_2 < 100 \)

3:

4: return 1

5: \(k_3 := k_2 + 1 \)

7: \(k_4 := \phi(k_3) \)
Optimizations using SSA

1:

2: $k_2 := \phi(k_3, 0)$
 if $k_2 < 100$

4: return 1

5: $k_3 := k_2 + 1$
Optimizations using SSA

• Arrays, Pointers and Memory
 – For more complex programs, we need *dependencies*: how does statement B depend on statement A?
 – **Read after write**: A defines variable v, then B uses v
 – **Write after write**: A defines v, then B defines v
 – **Write after read**: A uses v, then B defines v
 – **Control**: A controls whether B executes
Optimizations using SSA

- Memory dependence
 \[M[i] := 4 \]
 \[x := M[j] \]
 \[M[k] := j \]
- We cannot tell if \(i, j, k \) are all the same value which makes any optimization difficult
- Similar problems with Control dependence
- SSA does not offer an easy solution to these problems
More on Optimization

• Advanced Compiler Design and Implementation by Steven S. Muchnick

• Control Flow Analysis
• Data Flow Analysis
• Dependence Analysis
• Alias Analysis
• Early Optimizations
• Redundancy Elimination

• Loop Optimizations
• Procedure Optimizations
• Code Scheduling (pipelining)
• Low-level Optimizations
• Interprocedural Analysis
• Memory Hierarchy
Amdahl’s Law

- Speedup$_{\text{total}} = \frac{((1 - \text{Time}_{\text{Fractionoptimized}}) + \text{Time}_{\text{Fractionoptimized}})}{\text{Speedup}_{\text{optimized}}}-1$

- Optimize the common case, 90/10 rule
- Requires quantitative approach
 - Profiling + Benchmarking
- Problem: Compiler writer doesn’t know the application beforehand
Summary

• Optimizations can improve speed, while maintaining correctness
• Various early optimization steps
• Static Single-Assignment Form (SSA)
• Optimization using SSA Form
Converting to SSA Form

Program

k:=100
i:=0
if i<100:
 k:=k+1
 i:=i+1
return k

Control Flow Graph

1: k := 100
 i := 0
2: if i < 100
 return k
3: k := k+1
 i := i+1

Dominance Relations

• D(1) = {2,3,4}
• D(2) = {3,4}
• D(3) = {}
• D(4) = {}

Dominance Frontier

• DF(1) = {}
• DF(2) = {2}
• DF(3) = {2}
• DF(4) = {}/
Converting to SSA Form

Control Flow Graph

1: \(k := 100 \)
 \(i := 0 \)

2: \(i = \phi(i,i) \)
 \(k = \phi(k,k) \)
 if \(i < 100 \)

3: \(k := k+1 \)
 \(i := i+1 \)

4: return \(k \)

Variable \(i,k \) in 1
DF(1) = {}

Variable \(i \) in 2
DF(2) = {2}

Variable \(i,k \) in 3
DF(3) = {2}

Variable \(k \) in 4
DF(4) = {}

Dominance Relations

- \(D(1) = \{2,3,4\} \)
- \(D(2) = \{3,4\} \)
- \(D(3) = {} \)
- \(D(4) = {} \)

Dominance Frontier

- \(DF(1) = {} \)
- \(DF(2) = \{2\} \)
- \(DF(3) = \{2\} \)
- \(DF(4) = {} \)
Converting to SSA Form

1: \(k1 := 100 \)
 \(i1 := 0 \)

2: \(i2 = \phi(i1,i3) \)
 \(k2 = \phi(k1,k3) \)
 if \(i2 < 100 \)

3: \(k3 := k2+1 \)
 \(i3 := i2+1 \)

4: return \(k \)