We have seen that individual words can be classified into groups or classes that we call **parts of speech**.

- **Determiners**: a, the
- **Verbs**: arrive, attracts, love, sit
- **Prepositions**: of, by, in, outside, on
- **Nouns**: he, she, it, San, Diego

But these individual words can group together to form larger groups which possess meaning when put together, e.g. *San Diego*, *the man outside the building*.
Let’s consider the grouping of words into **noun phrases**

- *three parties from Brooklyn*
- *a high class spot such as Mindy’s*
- *they*
- *Harry the Horse*
- *the fact that he came into the Hot Box*
- *swimming on a hot day*
These *noun phrases* are selected by verbs as a whole unit:

- three parties from Brooklyn *arrived* ...
- *three from* *arrived* ...
- a high class spot such as Mindy's *attracts* ...
- they *sit* ...
- they *like* swimming on a hot day
Testing for constituents

- Things that can be moved around together: *preposed* or *postposed* elements in a sentence.
 - *On Sept 17th, I’d like to fly to Toronto*
 - *I’d like to fly, On Sept 17th, to Toronto*
 - *I’d like to fly to Toronto On Sept 17th*
 - *On I’d like to fly Sept to Toronto 17th*
Testing for constituents

- Things that can be questioned:
 - Who came to the negotiating table?
 * three parties from Brooklyn*
 - Where would a high roller like Deckard go?
 * a high class spot such as Mindy’s*
 - What is it that Mary would like to do when she visits?
 * swimming on a hot day*
Testing for constituents

- Things that can be referred to with a pronoun:
 - three parties from Brooklyn arrived
 - they were late
 - a high class spot such as Mindy’s is where Deckard would go
 - But it is closed today
 - swimming on a hot day is what Mary would like to do
 - Even though it is bad for health
Testing for constituents

- Things that can be coordinated:
 - John and Mary
 - the barrier islands and frogs that provide hallucinations when you lick them
 - swimming on a hot day and taking a long skiing lesson
Testing for constituents

- Movement is stricter than coordination:
 - John bought the large cup and small picture
 - the large cup, John bought
 - *large cup, John bought the

- Can you think of some cases that do not pass any of the three tests? (in any language)
Things that are not constituents

- Who does John think stole the cookies?
 Ans: * John thinks Mary

* But: John thinks Mary and Bill thinks Frida stole the cookies

- John bought the photo of a clown.
 Q: What was done to the photo of a clown?
 A: * John bought

* But: John bought and Bill installed the photo of a clown.

* What did John buy and Peter bought chocolates.

- John thinks Mary and John bought the tickets.

- John thinks Mary and John bought the tickets.
Finding noun phrases can be treated as finding a sequence of words that is a noun phrase (the **chunking** approach). Finding chunks is not trivial:

- (NNP San) (NNP Diego)
- (NNPS Wednesdays)
- (DT the) (NN company) (POS 's) (VBN refocused) (NN direction)
- (DT the) (NN government) (VBZ 's) (VBG dawdling)
- * (DT The) (NNP Dow) (NNP Jones) (VBZ is) (VBG swimming) (IN in) (NN tech) (NNS stocks)
Consider a regular expression for arithmetic expressions:

\[2 + 3 \times 4 \]
\[8 \times 10 + -24 \]
\[2 + 3 \times -2 + 8 + 10 \]

\[^\backslash s*\-?\backslash s*\d+\backslash s*\((\+|\-|\times)\backslash s*\-?\backslash s*\d+\backslash s*)\ast \]

Can we compute the meaning of these expressions?
Recursion in Regular Languages

- Construct the finite state automata and associate the meaning with the state sequence
- However, this solution is missing something crucial about arithmetic expressions – *what is it?*
Recursion in Regular Languages

- Going back to noun phrases (NP, for short): let’s attempt to provide a regular expression grammar for a subset of all the possible noun phrases

- Consider the noun phrases: the man in the park, the person with the big head in the park, the unicorn in the garden inside the dream with a strange mark on the head, ...

- These are simple noun phrases that have prepositional phrases (PP, for short) modifying nouns. PPs are another example of a constituent, but now we need to combine them with NPs
Consider the noun phrases: the man in the park, the person with the big head in the park, the unicorn in the garden inside the dream with a strange mark on the head, …

\[
\begin{align*}
\text{(NP)} & \text{(PP)* } \rightarrow \text{(Det N)} \text{(PP)* } \rightarrow \text{(Det N)} \text{(P NP)*} \\
\text{(Det N)} \text{(P (Det N)) PP* } \rightarrow \text{(Det N)} \text{(P (Det N)))*}
\end{align*}
\]

So, it’s possible, but it gets ugly fast, let’s widen our view of what can occur inside NPs.
Recursion in Regular Languages

- Let’s call (Det N) a **basal** NP and now consider that (Det N) is not the only base NP that is possible: (N) or (A N) or (A^+ N) or even:
 (D A* N POS N) *the short man ’s dream* . . .
- So this means that we can now have (P (N)) or (P (A N)) or (P (A^+ N)) or . . .
- Each former type of NP can be modified by each latter type of PP
- What is the only way to rescue the regular expression approach?
 combinatorial explosion of combinations
Context-Free Languages

- Clearly, this and other issues with the kind of recursion possible in regular languages is a problem if we want to describe natural languages. Recall our morphological FSA which over-generated and produced bogus words like *demonizableable because* of recursion.

- We need to look at a class of formal languages that generalizes regular languages: **Context-Free Languages**
Context-Free Languages

Here is a simple Context Free Grammar that does word morphology. The CFG is more *elegant* and smaller than the equivalent regular grammar (consider *joyable, *richment):

\[
\begin{align*}
V & \rightarrow X \\
A & \rightarrow X -able \mid X -ment \\
X & \rightarrow en- NA \\
NA & \rightarrow joy \mid rich
\end{align*}
\]

This is an engineering argument. However, it is related to the problem of describing the human learning process. Certain aspects of language are learned all at once not individually for each case.
e.g., learning *enjoyment* automatically if *enrichment* was learnt
Context-Free Grammars

- Recall the trinity of regular expressions, finite state automata and regular languages
- Now we generalize to context free grammars, pushdown automata and context-free languages
- Just like before, certain closure properties hold, the union of two CFLs is also a CFL, etc. except for one crucial property that is true in RLs but not in CFLs
Context-Free Grammars

- Determinization is also not always possible for pushdown automata
- Surprising fact about CFGs is that you can construct one that is inherently ambiguous
- Particular relevance for natural languages, compare with artificial grammars that we use routinely when we use a programming language (what happens in cases of ambiguity in finite state automata?)
- Deterministic vs. non-deterministic parsing (more on this later)
A CFG is a 4-tuple: \((N, T, P, S)\), where

- \(N\) is a set of non-terminal symbols,
- \(T\) is a set of terminal symbols which can include the empty string \(\epsilon\). \(T\) is analogous to \(\Sigma\) the alphabet in FSAs.
- \(P\) is a set of rules of the form \(A \to \alpha\), where \(A \in N\) and \(\alpha \in \{N \cup T\}^*\)
- \(S\) is a set of start symbols, \(S \in N\)
Here’s an example of a CFG, let’s call this one G:
 1. $S \rightarrow a\ S\ b$
 2. $S \rightarrow \epsilon$

What is the language of this grammar, which we will call $L(G)$, the set of strings generated by this grammar How? Notice that there cannot be any FSA that corresponds exactly to this set of strings $L(G)$ Why?

What is the tree set or derivations produced by this grammar?
This notion of generating both the strings and the trees is an important one for Computational Linguistics.

Consider the trees for the grammar G':

$P = \{ S \rightarrow AA, A \rightarrow aA, A \rightarrow bA, A \rightarrow \epsilon \}$,

$\Sigma = \{a, b\}$, $N = \{S, A\}$, $T = \{a, b, \epsilon\}$, $S = \{S\}$

Why is it called context-free grammar?
Can the grammar G' produce only trees of the kind shown below?
Context-Free Grammars

- We will come back to this issue when we try to figure out whether human languages are more powerful than CFLs.
- The distinction between strings and the trees (or any kind of structural description) is called weak vs. strong generative capacity.
Parse Trees

Consider the grammar with rules:

\[
\begin{align*}
S & \rightarrow NP \ VP \\
NP & \rightarrow PRP \\
NP & \rightarrow DT \ NPB \\
VP & \rightarrow VBP \ NP \\
NPB & \rightarrow NN \ NN \\
PRP & \rightarrow I \\
VBP & \rightarrow \text{prefer} \\
DT & \rightarrow a \\
NN & \rightarrow \text{morning} \\
NN & \rightarrow \text{flight}
\end{align*}
\]
Parse Trees: Equivalent Representations

▶ (S (NP (PRP I)) (VP (VBP prefer) (NP (DT a) (NPB (NN morning) (NN flight))))))

▶ [S [NP [PRP I]] [VP [VBP prefer] [NP [DT a] [NPB [NN morning] [NN flight]]]]]
Ambiguous Grammars

- $S \rightarrow S\ S$
- $S \rightarrow a$

Given the above rules, consider the input aaa, what are the valid parse trees?

Now consider the input $aaaa$