Prepositional Phrases

- noun attach: *I bought the shirt with pockets*
Prepositional Phrases

- noun attach: *I bought the shirt with pockets*
- verb attach: *I washed the shirt with soap*
Prepositional Phrases

- noun attach: *I bought the shirt with pockets*
- verb attach: *I washed the shirt with soap*
- As in the case of other attachment decisions in parsing: it depends on the meaning of the entire sentence – needs world knowledge, etc.
Prepositional Phrases

▶ noun attach: *I bought the shirt with pockets*
▶ verb attach: *I washed the shirt with soap*
▶ As in the case of other attachment decisions in parsing: it depends on the meaning of the entire sentence – needs world knowledge, etc.
▶ Maybe there is a simpler solution: we can attempt to solve it using heuristics or associations between words
Structure Based Ambiguity Resolution

- Right association: a constituent (NP or PP) tends to attach to another constituent immediately to its right (Kimball 1973)
- Minimal attachment: a constituent tends to attach to an existing non-terminal using the fewest additional syntactic nodes (Frazier 1978)
- These two principles make opposite predictions for prepositional phrase attachment
- Consider the grammar:

\[
\begin{align*}
VP & \rightarrow \ V \ NP \ PP \\
NP & \rightarrow \ NP \ PP
\end{align*}
\] (1)

for input: I [\textit{VP saw [NP the man . . . [PP with the telescope]}], RA predicts that the PP attaches to the NP, i.e. use rule (2), and MA predicts V attachment, i.e. use rule (1)
Structure Based Ambiguity Resolution

- Garden-paths look structural:
 The emergency crews hate most is domestic violence

- Neither MA or RA account for more than 55% of the cases in real text

- Psycholinguistic experiments using eyetracking show that humans resolve ambiguities as soon as possible in the left to right sequence using the words to disambiguate

- Garden-paths are caused by a combination of lexical and structural effects:
 The flowers delivered for the patient arrived
Learning Prepositional Phrase Attachment: Annotated Data

<table>
<thead>
<tr>
<th>v</th>
<th>n1</th>
<th>p</th>
<th>n2</th>
<th>Attachment</th>
</tr>
</thead>
<tbody>
<tr>
<td>join</td>
<td>board</td>
<td>as</td>
<td>director</td>
<td>V</td>
</tr>
<tr>
<td>is</td>
<td>chairman</td>
<td>of</td>
<td>N.V.</td>
<td>N</td>
</tr>
<tr>
<td>using</td>
<td>crocidolite</td>
<td>in</td>
<td>filters</td>
<td>V</td>
</tr>
<tr>
<td>bring</td>
<td>attention</td>
<td>to</td>
<td>problem</td>
<td>V</td>
</tr>
<tr>
<td>is</td>
<td>asbestos</td>
<td>in</td>
<td>products</td>
<td>N</td>
</tr>
<tr>
<td>making</td>
<td>paper</td>
<td>for</td>
<td>filters</td>
<td>N</td>
</tr>
<tr>
<td>including</td>
<td>three</td>
<td>with</td>
<td>cancer</td>
<td>N</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>
Prepositional Phrase Attachment

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always noun attachment</td>
<td>59.0</td>
</tr>
<tr>
<td>Most likely for each preposition</td>
<td>72.2</td>
</tr>
<tr>
<td>Average Human (4 head words only)</td>
<td>88.2</td>
</tr>
<tr>
<td>Average Human (whole sentence)</td>
<td>93.2</td>
</tr>
</tbody>
</table>
Let 1 represent noun attachment.
Let 1 represent noun attachment.
We want to compute probability of noun attachment:
$p(1 \mid v, n1, p, n2)$.
Back-off Smoothing

Let 1 represent noun attachment.

We want to compute probability of noun attachment: $p(1 \mid v, n1, p, n2)$.

Probability of verb attachment is $1 - p(1 \mid v, n1, p, n2)$.
Back-off Smoothing

1. If \(f(v, n1, p, n2) > 0 \) and \(\hat{p} \neq 0.5 \)

\[
\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}
\]
Back-off Smoothing

1. If \(f(v, n1, p, n2) > 0 \) and \(\hat{p} \neq 0.5 \)

\[
\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}
\]

2. Else if \(f(v, n1, p) + f(v, p, n2) + f(n1, p, n2) > 0 \) and \(\hat{p} \neq 0.5 \)

\[
\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p) + f(1, v, p, n2) + f(1, n1, p, n2)}{f(v, n1, p) + f(v, p, n2) + f(n1, p, n2)}
\]
Back-off Smoothing

1. If $f(v, n1, p, n2) > 0$ and $\hat{p} \neq 0.5$

$$\hat{p}(1 | v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}$$

2. Else if $f(v, n1, p) + f(v, p, n2) + f(n1, p, n2) > 0$
 and $\hat{p} \neq 0.5$

$$\hat{p}(1 | v, n1, p, n2) = \frac{f(1, v, n1, p) + f(1, v, p, n2) + f(1, n1, p, n2)}{f(v, n1, p) + f(v, p, n2) + f(n1, p, n2)}$$

3. Else if $f(v, p) + f(n1, p) + f(p, n2) > 0$

$$\hat{p}(1 | v, n1, p, n2) = \frac{f(1, v, p) + f(1, n1, p) + f(1, p, n2)}{f(v, p) + f(n1, p) + f(p, n2)}$$
Back-off Smoothing

1. If $f(v, n1, p, n2) > 0$ and $\hat{\rho} \neq 0.5$

 $$\hat{\rho}(1 | v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}$$

2. Else if $f(v, n1, p) + f(v, p, n2) + f(n1, p, n2) > 0$ and $\hat{\rho} \neq 0.5$

 $$\hat{\rho}(1 | v, n1, p, n2) = \frac{f(1, v, n1, p) + f(1, v, p, n2) + f(1, n1, p, n2)}{f(v, n1, p) + f(v, p, n2) + f(n1, p, n2)}$$

3. Else if $f(v, p) + f(n1, p) + f(p, n2) > 0$

 $$\hat{\rho}(1 | v, n1, p, n2) = \frac{f(1, v, p) + f(1, n1, p) + f(1, p, n2)}{f(v, p) + f(n1, p) + f(p, n2)}$$

4. Else if $f(p) > 0$

 $$\hat{\rho}(1 | v, n1, p, n2) = \frac{f(1, p)}{f(p)}$$
Back-off Smoothing

1. If \(f(v, n1, p, n2) > 0 \) and \(\hat{p} \neq 0.5 \)

\[
\hat{p}(1 | v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}
\]

2. Else if \(f(v, n1, p) + f(v, p, n2) + f(n1, p, n2) > 0 \)
 and \(\hat{p} \neq 0.5 \)

\[
\hat{p}(1 | v, n1, p, n2) = \frac{f(1, v, n1, p) + f(1, v, p, n2) + f(1, n1, p, n2)}{f(v, n1, p) + f(v, p, n2) + f(n1, p, n2)}
\]

3. Else if \(f(v, p) + f(n1, p) + f(p, n2) > 0 \)

\[
\hat{p}(1 | v, n1, p, n2) = \frac{f(1, v, p) + f(1, n1, p) + f(1, p, n2)}{f(v, p) + f(n1, p) + f(p, n2)}
\]

4. Else if \(f(p) > 0 \)

\[
\hat{p}(1 | v, n1, p, n2) = \frac{f(1, p)}{f(p)}
\]

5. Else \(\hat{p}(1 | v, n1, p, n2) = 1.0 \)
Prepositional Phrase Attachment: (Collins and Brooks 1995)

- **Results**: 84.5% accuracy with the use of some limited word classes for dates, numbers, etc.

- Using complex word classes taken from WordNet (which we shall be looking at later in this course) increases accuracy to 88% (Stetina and Nagao 1998)

- We can improve on parsing performance with Probabilistic CFGs by using the insights taken from PP attachment.

- Modify the PCFG model to be sensitive to words and other context-sensitive features of the input.

- And generalizing to other kinds of attachment problems, like coordination or deciding which constituent is an argument of a verb.
Some other studies

- Toutanova, Manning, and Ng, 2004:
 use sophisticated smoothing model for PP attachment
 86.18% with words & stems; with word classes: 87.54%

- Merlo, Crocker and Berthouzoz, 1997:
 test on multiple PPs, generalize disambiguation of 1 PP to 2-3 PPs
 14 structures possible for 3PPs assuming a single verb: all 14 are attested in the Treebank
 same model as CB95; but generalized to dealing with upto 3PPs
 1PP: 84.3% 2PP: 69.6% 3PP: 43.6%
 Note that this is still not the real problem faced in parsing natural language