CMPT 413
Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop
Finite-state transducers

• $a : 0$ is a notation for a mapping between two alphabets $a \in \Sigma_1$ and $0 \in \Sigma_2$

• Finite-state transducers (FSTs) accept pairs of strings

• Finite-state automata equate to regular languages and FSTs equate to regular relations

• e.g. $L = \{ (x^n, y^n) : n > 0, x \in \Sigma_1$ and $y \in \Sigma_2 \}$ is a regular relation accepted by some FST. It maps a string of x’s into an equal length string of y’s
Finite-state transducers

\[R(T_1) = R(T_2) = \{ (aa, 10), (ab, 1) \} \]
Finite-state transducers
Finite-state transducers
Regular relations

• A generalization of regular languages
• The set of regular relations is:
 – The empty set and \((x, y)\) for all \(x, y \in \Sigma_1 \times \Sigma_2\) is a regular relation
 – If \(R_1, R_2\) and \(R\) are regular relations then:
 \[R_1 \cdot R_2 = \{(x_1 x_2, y_1 y_2) \mid (x_1, y_1) \in R_1, (x_2, y_2) \in R_2\} \]
 \[R_1 \cup R_2 \]
 \[R^* = \bigcup_{i=0}^{\infty} R_i \]
 – There are no other regular relations
Finite-state transducers

• Formal definition:
 – Q: finite set of states, q_0, q_1, \ldots, q_n
 – Σ: alphabet composed of input/output pairs $i:o$
 where $i \in \Sigma_1$ and $o \in \Sigma_2$ and so $\Sigma \subseteq \Sigma_1 \times \Sigma_2$
 – q_0: start state
 – F: set of final states
 – $\delta(q, i:o)$ is the transition function which returns a set of states
Finite-state transducers: Examples

- \((a^n, b^n)\): map \(n\) a’s into \(n\) b’s
- rot13 encryption (the Caesar cipher): assuming 26 letters each letter is mapped to the letter 13 steps ahead (mod 26), e.g. *cipher* \(\rightarrow\) *pv cure*
- reversal of a fixed set of words
- reversal of all strings up to fixed length \(k\)
- input: binary number \(n\), and output: binary number \(n+1\)
- upcase or lowercase a string of any length
- *Pig latin: *pig latin is goofy \(\rightarrow\) igpay atinlay is oofygay
- *convert numbers into pronunciations, e.g.* 230.34 two hundred and thirty point three four
Finite-state transducers

• Following relations are cannot be expressed as a FST
 – \((a^n b^n, c^n)\): because \(a^n b^n\) is not regular
 – reversal of strings of any length
 – \(a^i b^j \rightarrow b^j a^i\) for any \(i, j\)

• Unlike regular languages, regular relations are not closed under intersection
 – \((a^n b^*, c^n) \cap (a^* b^n, c^n)\) produces \((a^n b^n, c^n)\)
 – However, regular relations with input and output of equal lengths are closed under intersection
Regular Relations Closure Properties

• Regular relations (rr) are closed under some operations
• For example, if R₁, R₂ are regular relns:
 – union (R₁ ∪ R₂ results in R₃ which is a rr)
 – concatenation
 – iteration (R₁₊ = one or more repeats of R₁)
 – Kleene closure (R₁* = zero or more repeats of R₁)
• However, unlike regular languages, regular relns are not closed under:
 – intersection (possible for equal length regular relns)
 – complement
Regular Relations Closure Properties

• New operations for regular relations:
 – composition
 – project input (or output) language to regular language; for FST \(t \), input language = \(\pi_1(t) \), output = \(\pi_2(t) \)
 – take a regular language and create the identity regular relation; for FSM \(f \), let FST for identity relation be \(\text{Id}(f) \)
 – take two regular languages and create the cross product relation; for FSMs \(f \& g \), FST for cross product is \(f \times g \)
 – take two regular languages, and mark each time the first language matches any string in the second language
Regular Relation/FST

Kleene Closure
Regular Expressions for FSTs

(a:c) (b:d)*
(a:c (b:d)*) | ((e:g) f:h)
g:i ε:j (h:k)*
\[(a:0 \lor a:1) \land (b:0 \lor b:1) \]
Subsequential FSTs

Sequential transducer = transducer with deterministic input

input: abbaa output: bbab

\(p \)-subsequential transducer = transducer with at most \(p \) output strings at each final state

input: aa ambiguous output: \{ aaa, aab \}

Two outputs at final state
Subsequential FSTs

• Consider an FST in which for every symbol scanned from the input we can deterministically choose a path and produce an output.

• Such an FST is analogous to a deterministic FSM. It is called a **subsequential** FST.

• Subsequential transducers with \(p \) outputs on the final state is called a **\(p \)-subsequential** FST.

• \(p \)-subsequential FSTs can produce ambiguous outputs for a given input string.
FST that is not subsequential

Input: x^n
Output: a^n if n is even, else b^n
FST Algorithms

- **Compose**: Given two FSTs f and g defining regular relations R_1 and R_2 create the FST $f \circ g$ that computes the composition: $R_1 \circ R_2$

- **Recognition**: Is a given pair of strings accepted by FST t?

- **Transduce**: given an input string, provide the output string(s) as defined by the regular relation provided by an FST
Composing FSTs

on input side:
\[a^n = a^* \]

What is \(T_1 \) composed with \(T_2 \), aka \(T_1 \circ T_2 \)?
Composing FSTs

\[T_1 \circ T_2: \]

\[0 \xrightarrow{b:a} 2 \xrightarrow{b:a} 3 \]
\[1 \xrightarrow{a:a} 2 \xrightarrow{b:a} 3 \]
\[ab := ac \]
\[bb := aa \]
Composing FSTs

\[(0,0) (1,1) \text{ a : a} (0,0) (2,1) \text{ b : a} \]
\[(0,1) (1,2) \text{ a : a} (0,1) (2,2) \text{ b : a} \]
\[(2,0) (3,1) \text{ b : a} (2,1) (3,2) \text{ b : a} \]

\[(0,1) (0,1) \text{ a : d} (1,1) (3,1) \text{ b : d} \]
\[(0,1) (0,2) \text{ a : c} (1,1) (3,2) \text{ b : c} \]
Composing FSTs

\[
\begin{array}{c}
(0,0) \ (1,1) \ a : a \\
(0,1) \ (1,2) \ a : a \\
(2,0) \ (3,1) \ b : a
\end{array}
\]

start with pair of final states
Composing FSTs

0 1 a : b
0 2 b : b
2 3 b : b

(0,0) (1,1) a : a
(0,0) (2,1) b : a
(0,1) (1,2) a : a
(0,1) (2,2) b : a
(2,0) (3,1) b : a
(2,1) (3,2) b : a

(0,1) (0,1) a : d
(1,1) (3,1) b : d
(0,1) (0,2) a : c
(1,1) (3,2) b : c
Composing FSTs

(0,0) (1,1) a : a
(0,1) (1,2) a : a
(2,0) (3,1) b : a

(0,0) (2,1) b : a
(0,1) (2,2) b : a
(2,1) (3,2) b : a

(0,0) (0,1) a : d
(0,1) (0,2) a : c

(2,1) (3,1) b : d
(1,1) (3,2) b : c
Composing FSTs

\[T_1 \circ T_2: \]

\[
\begin{array}{c}
0,0 \quad a:a \quad 1,1 \quad b:c \\
\quad b:a \quad 2,1 \quad b:a \\
\quad b:a \quad 3,2 \\
\end{array}
\]

\[
ab := ac \\
bb := aa
\]
Composing FSTs

(a:c (b:d)*) | ((e:g)* f:h)

g:i ε:j (h:k)*

e:i ε:j f:k
FST Composition

- Input: transducer S and T
- Transducer composition results in a new transducer with states and transitions defined by matching compatible input-output pairs:
 \[
 \text{match}(s,t) = \\
 \{ (s,t) \rightarrow^{x,z} (s',t') : s \rightarrow^{x,y} s' \in S.\text{edges} \text{ and } t \rightarrow^{y,z} t' \in T.\text{edges} \} \cup \\
 \{ (s,t) \rightarrow^{x;\epsilon} (s',t) : s \rightarrow^{x;\epsilon} s' \in S.\text{edges} \} \cup \\
 \{ (s,t) \rightarrow^{\epsilon,z} (s,t') : t \rightarrow^{\epsilon,z} t' \in T.\text{edges} \}
 \]
- Correctness: any path in composed transducer mapping \(u \) to \(w \) arises from a path mapping \(u \) to \(v \) in S and path mapping \(v \) to \(w \) in T, for some \(v \)
Complex FSTs with composition

• Take, for example, the task of constructing an FST for the Soundex algorithm
• Soundex is useful to map spelling variants of proper names to a single code (hashing names)
• It depends on a mapping from letters to codes
Soundex

- Mapping from letters to numbers:
 - $b, f, p, v \rightarrow 1$
 - $c, g, j, k, q, s, x, z \rightarrow 2$
 - $d, t \rightarrow 3$
 - $l \rightarrow 4$
 - $m, n \rightarrow 5$
 - $r \rightarrow 6$
Soundex

• The Soundex algorithm:
 – If two or more letters with the same number are adjacent in the input, or adjacent with intervening h’s or w’s omit all but the first
 – Retain the first letter and delete all occurrences of a, e, h, i, o, u, w, y
 – Except for the first letter, change all letters into numbers
 – Convert result into LNNN (letter and 3 numbers), either truncate or add 0s
Soundex

- Example:
 - Losh-shkan, Los-qam
 - Loshhkan, Losqam
 - Lskn, Lsqm
 - L225, L225

- Other examples:
 - Euler (E460), Gauss (G200), Hilbert (H416), Knuth (K530), Lloyd (L300), Lukasiewicz (L222), and Wachs (W200)
Soundex

• How can we implement Soundex as a FST?
• For each step in Soundex, the FST is quite simple to write
• Writing a single FST from scratch that implements Soundex is quite challenging
• A simpler solution is to build small FSTs, one for each step, and then use FST composition to build the FST for Soundex
FST that is not subsequential

Input: x^n
Output: a^n if n is even, else b^n
Conversion to subsequential FST

Input: x^n
- Step1 output: $(x_1/x_2)^*x_2$ if n is even, else $(x_1/x_2)^*x_1$
- Step2 output: reversal of Step1 output
- Step3 output: a^n if n is even, else b^n

Interesting fact: this can be done for any non-subsequential FST to convert it into a subsequential FST
Recognition of string pairs

function FSTRecognize \(\text{input}[], \text{output}[], q \) :
 Agenda = \{ (\text{start-state}, 0, 0) \}
 Current = (\text{state}, i, o) = \text{pop}(\text{Agenda}) // i : \text{- inputIndex}, o : \text{- outputIndex}
 while (true) {
 if (Current is an accept item) return accept
 else Agenda = Agenda \cup \text{GenStates}(q, \text{state}, \text{input}, \text{output}, i, o)
 if (Agenda is empty) return reject
 else Current = (\text{state}, i, o) = \text{pop}(\text{Agenda})
 }

function GenStates \(q, \text{state}, \text{input}[], \text{output}[], i, o \) :
 return \{ (q’, i, o) : \text{for all } q’ = q(\text{state}, \epsilon:\epsilon) \} \cup
 \{ (q’, i, o+1) : \text{for all } q’ = q(\text{state}, \epsilon:\text{output}[o+1]) \} \cup
 \{ (q’, i+1, o) : \text{for all } q’ = q(\text{state}, \text{input}[i+1]:\epsilon) \} \cup
 \{ (q’, i+1, o+1) : \text{for all } q’ = q(\text{state}, \text{input}[i+1], \text{output}[i+1]) \}
Transduction: input \rightarrow output

- The **transduce** operation for a FST t can be simulated efficiently using the following steps:
 1. Convert the input string into a FSM f (the machine only accepts the input string, nothing else).
 2. Convert f into a FST by taking $\text{Id}(f)$ and compose with t to give a new FST $g = \text{Id}(f) \circ t$. (note that g only contains those paths compatible with input f)
 3. Finally project the output language of g to give a FSM for the output of transduce: $\pi_2(g)$
 4. Optionally, eliminate any transitions that only derive the empty string from the $\pi_2(g)$ FST.

- What follows is an alternate version that attempts to produce all output strings
Transduction: input \rightarrow output

input: $\{0, a, 1, b, 2\}

agenda: $\{(0, 0, [])\}$

agenda: $\{(1, 1, [d]), (2, 1, [c])\}$

agenda: $\{(2, 1, [c]), (3, 2, [d \oplus c])\}$

agenda: $\{(3, 2, [d \oplus c, c \oplus d])\}$

agenda: $\{(3, 2, [dc, cd])\}$

$\{3, 2, [dc, cd]\}$ is an accept item: output = dc, cd
Transduction: input → output

function FSTtransduce (input[], q):
 Agenda = { (start-state, 0, []) } // each item contains list of partial outputs
 Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list
 output = ()
 while (true) {
 if (Current is an accept item) output ⊕ out
 else Agenda = Agenda ∪ GenStates(q, state, input, out, i)
 if (Agenda is empty) return output
 else Current = (state, i, o) = pop(Agenda)
 }
Transduction: input → output

function FSTtransduce (input[], q):
 Agenda = { (start-state, 0, []) } // each item contains list of partial outputs
 Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list
 output = ()
 while (true) {
 if (Current is an accept item) output ⊕ out
 else Agenda = Agenda ∪ GenStates(q, state, input, out, i)
 if (Agenda is empty) return output
 else Current = (state, i, o) = pop(Agenda)
 }
Transduction: input → output

function FSTtransduce (input[], q):
 Agenda = { (start-state, 0, []) } // each item contains list of partial outputs
 Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list
 output = ()
 while (true) {
 if (Current is an accept item) output ⊕ out
 else Agenda = Agenda ∪ GenStates(q, state, input, out, i)
 if (Agenda is empty) return output
 else Current = (state, i, o) = pop(Agenda)
 }

function GenStates (q, state, input[], out, i):
 return { (q’, i, out) : for all q’ = q(state, ε:ε) } ∪
 { (q’, i, out ⊕ newOut) : for all q’ = q(state, ε:newOut) } ∪
 { (q’, i+1, out) : for all q’ = q(state, input[i+1]:ε) } ∪
 { (q’, i+1, out ⊕ newOut) : for all q’ = q(state, input[i+1], newOut) }
Transduction: input → output

function FSTtransduce (input[], q):
 Agenda = { (start-state, 0, []) } // each item contains list of partial outputs
 Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list
 output = ()
 while (true) {
 if (Current is an accept item) output \oplus out
 else Agenda = Agenda \cup GenStates(q, state, input, out, i)
 if (Agenda is empty) return output
 else Current = (state, i, o) = pop(Agenda)
 }

function GenStates (q, state, input[], out, i):
 return { (q’, i, out) : for all q’ = q(state, ε:ε) } \cup
 { (q’, i, out \oplus newOut) : for all q’ = q(state, ε:newOut) } \cup
 { (q’, i+1, out) : for all q’ = q(state, input[i+1]:ε) } \cup
 { (q’, i+1, out \oplus newOut) : for all q’ = q(state, input[i+1], newOut) }
Cross-product FST

• For regular languages L_1 and L_2, we have two FSAs, M_1 and M_2

$$M_1 = (\Sigma, Q_1, q_1, F_1, \delta_1)$$
$$M_2 = (\Sigma, Q_2, q_2, F_2, \delta_2)$$

• Then a transducer accepting $L_1 \times L_2$ is defined as:

$$T = (\Sigma, Q_1 \times Q_2, \langle q_1, q_2 \rangle, F_1 \times F_2, \delta)$$

$$\delta(\langle s_1, s_2 \rangle, a, b) = \delta_1(s_1, a) \times \delta_2(s_2, b)$$

for any $s_1 \in Q_1, s_2 \in Q_2$ and $a, b \in \Sigma \cup \{\varepsilon\}$
Cross-product FST

(alb)b

0 → 1 → b

a

0,0

a:1

b:0

1,1

b:1

1

0 → 1 → 1

1 → 0

(01|10)

3

1,2

b:0

0,0

3,3

a:0

b:0

1,1

1,2

b:1
Summary

• Finite state transducers specify regular relations
 – Encoding problems as finite-state transducers
• Extension of regular expressions to the case of regular relations/FSTs
• FST closure properties: union, concatenation, composition
• FST special operations:
 – creating regular relations from regular languages (Id, cross-product);
 – creating regular languages from regular relations (projection)
• FST algorithms
 – Recognition, Transduction
 – Determinization, Minimization? (not all FSTs can be determinized)