Sequence Learning

• British Left Waffles on Falkland Islands
 – (N, N, V, P, N, N)
 – (N, V, N, P, N, N)

• Segmentation
 中国十四个边境开放城市建设成就显著
 – (b, i, b, i)
 中国十四 个 边境 开放 城市 经济 建设 成就 显著
 China ’s 14 open border cities marked economic achievements
Sequence Learning

3 states: N, V, P
Observation sequence: \((o_1, \ldots o_6)\)
State sequence (6+1): \((Start, N, N, V, P, N, N)\)
Finite State Machines

Mealy Machine
Finite State Machines

Moore Machine
Probabilistic FSMs

- Start at a state i with a start state probability: π_i
- Transition from state i to state j is associated with a transition probability: a_{ij}
- Emission of symbol o from state i is associated with an emission probability: $b_i(o)$
- Two conditions:
 - All outgoing transition arcs from a state must sum to 1
 - All symbol emissions from a state must sum to 1
Probabilistic FSMs

0 killer 1/3 killer
1.0 crazy 0 crazy
0 clown 1/3 clown
0 problem 1/3 problem
Probabilistic FSMs

Emission
- $b_A(\text{killer}) = 0$
- $b_A(\text{crazy}) = 1$
- $b_A(\text{clown}) = 0$
- $b_A(\text{problem}) = 0$

Emission
- $b_N(\text{killer}) = \frac{1}{3}$
- $b_N(\text{crazy}) = 0$
- $b_N(\text{clown}) = \frac{1}{3}$
- $b_N(\text{problem}) = \frac{1}{3}$

Start state
- $\pi_A = \frac{1}{2}$
- $\pi_N = \frac{1}{2}$

Transition
- $a_{A,A} = \frac{1}{3}$
- $a_{A,N} = \frac{2}{3}$
- $a_{N,N} = \frac{9}{10}$
- $a_{N,A} = \frac{1}{10}$

Transition
- $\sum_{i,j} a_{i,j} = 1$
Hidden Markov Models

• There are n states $s_1, \ldots, s_i, \ldots, s_n$
• The emissions are observed (input data)
• Observation sequence $O = (o_1, \ldots, o_t, \ldots, o_T)$
• The states are not directly observed (hidden)
• Data does not directly tell us which state X_t is linked with observation o_t
 $X_t \in \{s_1, \ldots, s_n\}$
Markov Chains vs. HMMs

• For observation sequence babaa
 i.e: $o_1=b$, $o_2=a$, …, $o_5=a$
• Compute $P(babaa)$ using a bigram model
 $P(b)*P(a|b)*P(b|a)*P(a|b)*P(a|a)$
• Equivalent Markov chain:
Markov Chains vs. HMMs

• For observation sequence $babaa$

 $i.e.: o_1=b, o_2=a, \ldots, o_5=a$

• Compute $P(babaa)$ using a trigram model

 $P(ba) \cdot P(b|ba) \cdot P(a|ab) \cdot P(a|ba)$

• Equivalent Markov chain:
Markov Chains vs. HMMs

• For observation sequence \textit{babaa}
 \(i.e.: o_1=b, o_2=a, \ldots, o_5=a\)

• Compute \(P(babaa)\) using a trigram model
 \[P(ba) \times P(b|ba) \times P(a|ab) \times P(a|ba)\]

• Equivalent Markov chain:
Markov Chains vs. HMMs

• Given an observation sequence
 \(O = (o_1, \ldots, o_t, \ldots, o_T) \)

• An \(n \)th order Markov Chain or \(n \)-gram model computes the probability
 \[P(o_1, \ldots, o_t, \ldots, o_T) \]

• An HMM computes the probability
 \[P(X_1, \ldots, X_{T+1}, o_1, \ldots, o_T) \] where the state sequence is \textit{hidden}
Properties of HMMs

• Markov assumption

\[P(X_t = s_i \mid \ldots, X_{t-1} = s_j) \]

• Stationary distribution

\[P(X_t = s_i \mid X_{t-1} = s_j) = P(X_{t+l} = s_i \mid X_{t+l-1} = s_j) \]
HMM Algorithms

• HMM as language model: compute probability of given observation sequence
• HMM as parser: compute the best sequence of states for a given observation sequence
• HMM as learner: given a set of observation sequences, learn its distribution, i.e. learn the transition and emission probabilities
HMM Algorithms

• HMM as language model: compute probability of given observation sequence

• Compute $P(o_1, \ldots, o_T)$ from the probability $P(X_1, \ldots, X_{T+1}, o_1, \ldots, o_T)$

$$= \prod_{t=1}^{T} P(X_{t+1} = s_j \mid X_t = s_i) \times P(o_t = k \mid X_{t+1} = s_j)$$

$$P(o_1, \ldots, o_T) = \sum_{X_1, \ldots, X_{T+1}} P(X_1, \ldots, X_{T+1}, o_1, \ldots, o_T)$$
HMM Algorithms

• HMM as parser: compute the best sequence of states for a given observation sequence

• Compute best path \(X_1, \ldots, X_{T+1} \) from the probability \(P(X_1, \ldots, X_{T+1}, o_1, \ldots, o_T) \)

Best state sequence \(X^*_1, \ldots, X^*_{T+1} \)

\[
\begin{align*}
= \arg \max_{X_1, \ldots, X_{T+1}} P(X_1, \ldots, X_{T+1}, o_1, \ldots, o_T)
\end{align*}
\]
Best Path (Viterbi) Algorithm

- Key Idea 1: storing just the best path doesn’t work
- Key Idea 2: store the best path upto each state
Viterbi Algorithm

function viterbi (edges, input, obs): returns best path
edges = transition probability
input = emission probability
T = length of obs, the observation sequence
num-states = number of states in the HMM
Create a path-matrix: viterbi[num-states+1, T+1] # init to all 0s
for each state s: viterbi[s, 0] = π[s]
for each time step t from 0 to T:
 for each state s from 0 to num-states:
 for each s’ where edges[s,s’] is a transition probability:
 new-score = viterbi[s,t] * edges[s,s’] * input[s’,obs[t]]
 if (viterbi[s’,t+1] == 0) or (new-score > viterbi[s’, t+1]):
 viterbi[s’, t+1] = new-score
 back-pointer[s’,t+1] = s
Viterbi Algorithm

finding the best path

best-final-score = best-final-state = 0

for each state s from 0 to num-states:
 if (viterbi[s,T+1] > best-final-score):
 best-final-state = s
 best-final-score = viterbi[s,T+1]

start with the last state in the sequence

x = best-final-state

state-sequence.push(x)

for t from T+1 downto 0:
 state-sequence.push(back-pointer[x,t])
 x = back-pointer[x,t]

return state-sequence