CMPT-413
Computational Linguistics

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

March 17, 2011
Why are parsing algorithms important?

▶ A linguistic theory is implemented in a formal system to generate the set of grammatical strings and rule out ungrammatical strings.
▶ Such a formal system has computational properties.
▶ One such property is a simple decision problem: given a string, can it be generated by the formal system (*recognition*).
▶ If it is generated, what were the steps taken to recognize the string (*parsing*).
Why are parsing algorithms important?

- Consider the recognition problem: find algorithms for this problem for a particular formal system.
- The algorithm must be decidable.
- Preferably the algorithm should be polynomial: enables computational implementations of linguistic theories.
- Elegant, polynomial-time algorithms exist for formalisms like CFG
Top-down, depth-first, left to right parsing

\[
\begin{align*}
S & \rightarrow NP \ VP \\
NP & \rightarrow Det \ N \\
NP & \rightarrow Det \ N \ PP \\
VP & \rightarrow V \\
VP & \rightarrow V \ NP \\
VP & \rightarrow V \ NP \ PP \\
PP & \rightarrow P \ NP \\
NP & \rightarrow I \\
Det & \rightarrow a \mid the \\
V & \rightarrow saw \\
N & \rightarrow park \mid dog \mid man \mid telescope \\
P & \rightarrow in \mid with
\end{align*}
\]
Top-down, depth-first, left to right parsing

- Consider the input string: *the dog saw a man in the park*
- S ... (S (NP VP)) ... (S (NP Det N) VP) ... (S (NP (Det the) N) VP) ... (S (NP (Det the) (N dog)) VP) ...
- (S (NP (Det the) (N dog)) VP) ... (S (NP (Det the) (N dog)) (VP V NP PP)) ... (S (NP (Det the) (N dog)) (VP (V saw) NP PP)) ...
- (S (NP (Det the) (N dog)) (VP (V saw) (NP Det N) PP)) ...
- (S (NP (Det the) (N dog)) (VP (V saw) (NP (Det a) (N man)) (PP (P in) (NP (Det the) (N park))))))
Number of derivations

CFG rules \(\{ S \rightarrow SS, S \rightarrow a \} \)

<table>
<thead>
<tr>
<th>(n : a^n)</th>
<th>number of parses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>132</td>
</tr>
<tr>
<td>8</td>
<td>429</td>
</tr>
<tr>
<td>9</td>
<td>1430</td>
</tr>
<tr>
<td>10</td>
<td>4862</td>
</tr>
<tr>
<td>11</td>
<td>16796</td>
</tr>
</tbody>
</table>
Number of derivations grows exponentially

$L(G) = a^+$ using CFG rules \[\{ \ S \to S \ S, \ S \to a \ \} \]
Syntactic Ambiguity: (Church and Patil 1982)

- Algebraic character of parse derivations
- Power Series for grammar for coordination type of grammars (more general than PPs):
 \[N \rightarrow \text{natural} \mid \text{language} \mid \text{processing} \mid \text{course} \]
 \[N \rightarrow N \ N \]
- We write an equation for algebraic expansion starting from \(N \)
- The equation represents generation of each string in the language as the terms, and the number of different ways of generating the string as the coefficients:
 \[
 N = \text{nat.} + \text{lang.} + \text{proc.} + \text{course} + \\
 + \text{nat. lang.} + \text{nat. proc.} + \ldots \\
 + 2(\text{nat. lang. proc.}) + 2(\text{lang. proc. course}) + \ldots \\
 + 5(\text{nat. lang. proc. course}) + \ldots \\
 + 14 \ldots
 \]
CFG Ambiguity

- Coefficients in previous equation equal the number of parses for each string derived from E
- These ambiguity coefficients are Catalan numbers:

$$Cat(n) = \frac{1}{n + 1} \binom{2n}{n}$$

- $\binom{a}{b}$ is the binomial coefficient

$$\binom{a}{b} = \frac{a!}{b!(a - b)!}$$
Why Catalan numbers? Cat(n) is the number of ways to parenthesize an expression of length \(n \) with two conditions:

1. there must be equal numbers of open and close parens
2. they must be properly nested so that an open precedes a close
Catalan numbers

For an expression of with \(n \) ways to form constituents there are a total of \(2n \) choose \(n \) parenthesis pairs, e.g. for \(n = 2 \),
\[
\binom{4}{2} = 6:
\]
\(a(bc), a)bc(,)a(bc, (ab)c,)ab(c, ab)c(\)

But for each valid parenthesis pair, additional \(n \) pairs are created that have the right parenthesis to the left of its matching left parenthesis, from e.g. above: \(a)bc(,)a(bc,)ab(c, ab)c(\)

So we divide \(2n \) choose \(n \) by \(n + 1 \):

\[
Cat(n) = \binom{2n}{n} / n + 1
\]
Catalan numbers

<table>
<thead>
<tr>
<th>n</th>
<th>$\text{catalan}(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>132</td>
</tr>
<tr>
<td>7</td>
<td>429</td>
</tr>
<tr>
<td>8</td>
<td>1430</td>
</tr>
<tr>
<td>9</td>
<td>4862</td>
</tr>
<tr>
<td>10</td>
<td>16796</td>
</tr>
</tbody>
</table>
Syntactic Ambiguity

- Cat\((n) \) also provides exactly the number of parses for the sentence: *John saw the man on the hill with the telescope* (generated by the grammar given below, a different grammar will have different number of parses)

\[
\begin{align*}
S & \rightarrow NP \ VP \\
NP & \rightarrow John \mid Det \ N \\
N & \rightarrow man \mid hill \mid telescope \\
VP & \rightarrow V \ NP \\
Det & \rightarrow the \\
VP & \rightarrow VP \ PP \\
NP & \rightarrow NP \ PP \\
PP & \rightarrow P \ NP \\
V & \rightarrow saw \\
P & \rightarrow on \mid with
\end{align*}
\]

number of parse trees = Cat\((2 + 1) = 5 \).
With 8 PPs: Cat\((9) = 4862 \) parse trees
Syntactic Ambiguity

- For grammar on previous page, number of parse trees $= \text{Cat}(2 + 1) = 5$.
- Why $\text{Cat}(2 + 1)$?
 - For 2 PPs, there are 4 things involved: VP, NP, PP-1, PP-2
 - We want the items over which the grammar imposes all possible parentheses
 - The grammar is structured in such a way that each combination with a VP or an NP reduces the set of items over which we obtain all possible parentheses to 3
 - This can be viewed schematically as $\text{VP} \ast \text{NP} \ast \text{PP-1} \ast \text{PP-2}$
 1. $(\text{VP} \ (\text{NP} \ (\text{PP-1} \ \text{PP-2})))$
 2. $(\text{VP} \ ((\text{NP} \ \text{PP-1}) \ \text{PP-2}))$
 3. $((\text{VP} \ \text{NP}) \ (\text{PP-1} \ \text{PP-2}))$
 4. $((\text{VP} \ (\text{NP} \ \text{PP-1})) \ \text{PP-2})$
 5. $(((\text{VP} \ \text{NP}) \ \text{PP-1}) \ \text{PP-2})$
 - Note that combining PP-1 and PP-2 is valid because PP-1 has an NP inside it.
Syntactic Ambiguity

- Other sub-grammars are simpler. For chains of adjectives:
 `cross-eyed pot-bellied ugly hairy professor` We can write the following grammar, and compute the power series:

\[
ADJP \rightarrow \text{adj ADJP} | \epsilon \\
ADJP = 1 + \text{adj} + \text{adj}^2 + \text{adj}^3 + \ldots
\]
Now consider power series of combinations of sub-grammars:

\[S = \text{NP} \cdot \text{VP} \]

(The number of products over sales ...)
(is near the number of sales ...)

Both the NP subgrammar and the VP subgrammar power series have Catalan coefficients
The power series for the $S \rightarrow NP \ VP$ grammar is the multiplication:

$$\left(N \sum_i Cat_i (P N)^i \right) \cdot \left(is \sum_j Cat_j (P N)^j \right)$$

In a parser for this grammar, this leads to a cross-product:

$$L \times R = \{(l, r) | l \in L \& r \in R\}$$
Syntactic Ambiguity

A simple change:

Is (The number of products over sales ...)
 (near the number of sales ...)

\[= \text{Is } N \sum_i \text{Cat}_i (P N)^i \cdot (\sum_j \text{Cat}_j (P N)^j)\]

\[= \text{Is } N \sum_i \sum_j \text{Cat}_i \text{Cat}_j (P N)^{i+j}\]

\[= \text{Is } N \sum_{i+j} \text{Cat}_{i+j+1} (P N)^{i+j}\]
A CFG for natural language can end up providing exponentially many analyses, approx $n!$, for an input sentence of length n.

Much worse than the worst case in the part of speech tagging case, which was n^m for m distinct part of speech tags.

If we actually have to process all the analyses, then our parser might as well be exponential.

Typically, we can directly use the compact description (in the case of CKY, the chart or 2D array, also called a *forest*)
Dealing with Ambiguity

- Solutions to this problem:
 - CKY algorithm: computes all parses in $O(n^3)$ time. Problem is that worst-case and average-case time is the same.
 - Earley algorithm: computes all parses in $O(n^3)$ time for arbitrary CFGs, $O(n^2)$ for unambiguous CFGs, and $O(n)$ for so-called bounded-state CFGs (e.g. $S \rightarrow aSa \mid bSb \mid aa \mid bb$ which generates palindromes over the alphabet a, b). Also, average case performance of Earley is better than CKY.
 - Deterministic parsing: only report one parse. Two options: top-down (LL parsing) or bottom-up (LR or shift-reduce) parsing
Shift-Reduce Parsing

- Every CFG has an equivalent pushdown automata: a finite state machine which has additional memory in the form of a stack
- Consider the grammar: \(NP \rightarrow Det \ N, \ Det \rightarrow the, \ N \rightarrow dogs \)
- Consider the input: \(the \ dogs \)
- Shift the first word \(the \) into the stack, check if the top \(n \) symbols in the stack matches the right hand side of a rule in which case you can reduce that rule, or optionally you can shift another word into the stack
Shift-Reduce Parsing

- reduce using the rule \(\text{Det} \rightarrow \text{the} \), and push \(\text{Det} \) onto the stack
- shift \(\text{dogs} \), and then reduce using \(\text{N} \rightarrow \text{dogs} \) and push \(\text{N} \) onto the stack
- the stack now contains \(\text{Det}, \text{N} \) which matches the rhs of the rule \(\text{NP} \rightarrow \text{Det N} \) which means we can reduce using this rule, pushing \(\text{NP} \) onto the stack
- If \(\text{NP} \) is the start symbol and since there is no more input left to shift, we can accept the string
- Can this grammar get stuck (that is, there is no shift or reduce possible at some stage while parsing) on a valid string?
- What happens if we add the rule \(\text{NP} \rightarrow \text{dogs} \) to the grammar?
Sometimes humans can be “led down the garden-path” when processing a sentence (from left to right).

Such garden-path sentences lead to a situation where one is forced to backtrack because of a commitment to only one out of many possible derivations.

Consider the sentence:
The emergency crews hate most is domestic violence.

Consider the sentence:
The horse raced past the barn fell
Once you process the word *fell* you are forced to reanalyze the previous word *raced* as being a verb inside a *relative clause*:
raced past the barn, meaning *the horse that was raced past the barn*

Notice however that other examples with the same structure but different words do not behave the same way.

For example:
the flowers delivered to the patient arrived
Earley Parsing

- Earley Parsing is a more advanced form of CKY parsing with two novel ideas:
 - A *dotted rule* as a way to get around the explicit conversion of a CFG to Chomsky Normal Form
 - Do not explore every single element in the CKY parse chart. Instead use goal-directed search
- Since natural language grammars are quite large, and are often modified to be able to parse more data, avoiding the explicit conversion to CNF is an advantage
- A dotted rule denotes that the right hand side of a CF rule has been partially recognized/parsed
- By avoiding the explicit n^3 loop of CKY, we can parse some grammars more efficiently, in time n^2 or n
- Goal-directed search can be done in any order including left to right (more psychologically plausible)
Earley Parsing

- $S \rightarrow \bullet NP \ VP$ indicates that once we find an NP and a VP we have recognized an S
- $S \rightarrow NP \ \bullet \ VP$ indicates that we’ve recognized an NP and we need a VP
- $S \rightarrow NP \ VP \ \bullet$ indicates that we have a complete S
- Consider the dotted rule $S \rightarrow \bullet NP \ VP$ and assume our CFG contains a rule $NP \rightarrow John$
 Because we have such an NP rule we can predict a new dotted rule $NP \rightarrow \bullet \ John$
Earley Parsing

- If we have the dotted rule: $NP \rightarrow \bullet \; John$ and the next input symbol on our input tape is the word $John$ we can scan the input and create a new dotted rule $NP \rightarrow John \bullet$

- Consider the dotted rule $S \rightarrow \bullet NP \; VP$ and $NP \rightarrow John \bullet$
 Since NP has been completely recognized we can complete $S \rightarrow NP \; \bullet \; VP$

- These three steps: predictor, scanner and completer form the Earley parsing algorithm and can be used to parse using any CFG without conversion to CNF
 Note that we have not accounted for ϵ in the scanner
A state is a dotted rule plus a span over the input string, e.g.
\((S \rightarrow NP \bullet VP, [4, 8])\) implies that we have recognized an
NP

We store all the states in a chart – in chart\([j]\) we store all
states of the form: \((A \rightarrow \alpha \bullet \beta, [i, j])\), where \(\alpha, \beta \in (N \cup T)^*\)
Earley Parsing

- Note that \(S \rightarrow NP \bullet VP, [0, 8] \) implies that in the chart there are two states \(NP \rightarrow \alpha \bullet, [0, 8] \) and
 \(S \rightarrow \bullet NP VP, [0, 0] \) — this is the completer rule, the heart of the Earley parser.
- Also if we have state \(S \rightarrow \bullet NP VP, [0, 0] \) in the chart, then we always predict the state \(NP \rightarrow \bullet \alpha, [0, 0] \) for all rules \(NP \rightarrow \alpha \) in the grammar.
Earley Parsing

\[
\begin{align*}
S & \rightarrow \ NP \ VP \\
NP & \rightarrow \ Det \ N \mid NP \ PP \mid John \\
Det & \rightarrow \ the \\
N & \rightarrow \ cookie \mid table \\
VP & \rightarrow \ VP \ PP \mid V \ NP \mid V \\
V & \rightarrow \ ate \\
PP & \rightarrow \ P \ NP \\
P & \rightarrow \ on
\end{align*}
\]

Consider the input: 0 John 1 ate 2 on 3 the 4 table 5
What can we predict from the state \((S \rightarrow \bullet \ NP \ VP, [0, 0])\)?
What can we complete from the state \((V \rightarrow ate \bullet, [1, 2])\)?
Earley Parsing

- enqueue(state, j):
 - input: state = \((A \rightarrow \alpha \bullet \beta, [i,j])\)
 - input: j (insert state into chart[j])
 - if state not in chart[j] then
 - chart[j].add(state)
 - end if

- predictor(state):
 - input: state = \((A \rightarrow B \bullet C, [i,j])\)
 - for all rules \(C \rightarrow \alpha\) in the grammar do
 - newstate = \((C \rightarrow \bullet \alpha, [j,j])\)
 - enqueue(newstate, j)
 - end for
Earley Parsing

- scanner(state, tokens):
 - **input:** state = \((A \rightarrow B \bullet a C, [i, j])\)
 - **input:** tokens (list of input tokens to the parser)
 - if tokens\([j]\) == \(a\) then
 - newstate = \((A \rightarrow B a \bullet C, [i, j + 1])\)
 - enqueue(newstate, j+1)
 - end if

- completer(state):
 - **input:** state = \((A \rightarrow B C \bullet, [j, k])\)
 - for all rules \(X \rightarrow Y \bullet A Z, [i, j]\) in chart\([j]\) do
 - newstate = \((X \rightarrow Y A \bullet Z, [i, k])\)
 - enqueue(newstate, k)
 - end for
Earley Parsing

- earley(tokens[0 \ldots N], grammar):

 \[\begin{align*}
 &\textbf{for each rule } S \rightarrow \alpha \text{ where } S \text{ is the start symbol } \textbf{do} \\
 &\quad \text{add } (S \rightarrow \bullet \alpha, [0, 0]) \text{ to chart}[0] \\
 &\textbf{end for} \\
 &\textbf{for } 0 \leq j \leq N + 1 \textbf{ do} \\
 &\quad \textbf{for state in chart}[j] \text{ that has not been marked } \textbf{do} \\
 &\quad \quad \text{mark state} \\
 &\quad \quad \textbf{if state }= (A \rightarrow \alpha \bullet B \beta, [i, j]) \textbf{ then} \\
 &\quad \quad \quad \text{predictor(state)} \\
 &\quad \quad \textbf{else if state }= (A \rightarrow \alpha \bullet b \beta, [i, j]), j < N + 1 \textbf{ then} \\
 &\quad \quad \quad \text{scanner(state, tokens)} \\
 &\quad \quad \textbf{else} \\
 &\quad \quad \quad \text{completer(state)} \\
 &\quad \textbf{end if} \\
 &\quad \textbf{end for} \\
 &\textbf{end for} \\
 &\textbf{return yes if chart}[N + 1] \text{ has a final state}
 \end{align*} \]
Earley Parsing

- **isIncomplete(state):**

  ```
  if state is of type \((A \rightarrow \alpha \bullet, [i, j])\) then
  return False
  end if
  return True
  ```

- **nextCategory(state):**

  ```
  if state == \((A \rightarrow B \bullet \nu C, [i, j])\) then
  return \(\nu\) (\(\nu\) can be terminal or non-terminal)
  else
  raise error
  end if
  ```
Earley Parsing

isFinal(state):

input: state = (A → α •, [i, j])

cond1 = A is a start symbol
cond2 = isIncomplete(state) is False
cond3 = j is equal to length(tokens)

if cond1 and cond2 and cond3 then
 return True
end if

return False

isToken(category):

if category is terminal symbol then
 return True
end if

return False