Minimum Cost Edit Distance

- String edit distance: what is the minimum number of changes (char insertions or deletions) to transform the string \textit{intention} into \textit{execution}?
- Assume cost of insertion is 1 and cost of deletion is 1
- Note that we assume that we can only change one character at a time
Levenshtein Distance

• Cost is fixed across characters
 – Insertion cost is 1
 – Deletion cost is 1

• Two different costs for substitutions
 – Substitution cost is 1 (transformation)
 – Substitution cost is 2 (one deletion + one insertion)

Minimum Cost Edit Distance

• Think of it as an alignment between target and source
 \[D(i, j) = \min \begin{cases}
 D(i-1, j) + \text{cost}(t_i, \emptyset) & \text{insertion into target} \\
 D(i-1, j-1) + \text{cost}(t_i, s_j) & \text{substitution/identity} \\
 D(i, j-1) + \text{cost}(\emptyset, s_j) & \text{deletion from source}
\end{cases} \]

 \[D(0, 0) = 0 \]
 \[D(i, 0) = D(i-1, 0) + \text{cost}(t_i, \emptyset) \]
 \[D(0, j) = D(0, j-1) + \text{cost}(\emptyset, s_j) \]
Function MinEditDistance (target, source)

n = length(target)
m = length(source)
Create matrix D of size (n+1,m+1)
D[0,0] = 0

for i = 1 to n
 D[i,0] = D[i-1,0] + insert-cost

for j = 1 to m
 D[0,j] = D[0,j-1] + delete-cost

for i = 1 to n
 for j = 1 to m
 D[i,j] = MIN(D[i-1,j] + insert-cost,
 D[i-1,j-1] + subst/eq-cost,
 D[i,j-1] + delete-cost)

return D[n,m]
Edit Distance and FSTs

- Algorithm using a Finite-state transducer:
 - construct a finite-state transducer with all possible ways to transduce intention (source = input) into execution (target = output)
 - We do this transduction one char at a time
 - A transition $x:x$ gets zero cost and a transition on $\varepsilon:x$ (insertion) or $x:\varepsilon$ (deletion) for any char x gets cost 1
 - Finding minimum cost edit distance == Finding the shortest path from start state to final state

Edit distance and FSTs

0 stands for empty string, $x:0$ means delete x, $0:x$ means insert x
Edit distance and FSTs
Edit distance

- Useful in many NLP applications
- In some cases, we need edits with multiple characters, e.g. 2 chars deleted for one cost
- Comparing system output with human output, e.g. input: ibm output: IBM vs. Ibm (TrueCasing of speech recognition output)
- Error correction
- Defined over character edits or word edits, e.g. MT evaluation:
 - Foreign investment in Jiangsu’s agriculture on the increase
 - Foreign investment in Jiangsu agricultural investment increased

Pronunciation dialect map of the Netherlands based on phonetic edit-distance (W. Heeringa Phd thesis, 2004)
Variable Cost Edit Distance

- So far, we have seen edit distance with uniform insert/delete cost
- In different applications, we might want different insert/delete costs for different items
- For example, consider the simple application of spelling correction
- Users typing on a qwerty keyboard will make certain errors more frequently than others
- So we can consider insert/delete costs in terms of a probability that a certain alignment occurs between the correct word and the typo word

Spelling Correction

- Types of spelling correction
 - non-word error detection
 e.g. hte for the
 - isolated word error detection
 e.g. acres vs. access (cannot decide if it is the right word for the context)
 - context-dependent error detection (real world errors)
 e.g. she is a talented acres vs. she is a talented actress
- For simplicity, we will consider the case with exactly 1 error
Noisy Channel Model

Source

original input

Noisy Channel

noisy observation

Decoder

Noisy Channel Model

Bayes Rule: computing \(P(\text{orig} \mid \text{noisy}) \)

- let \(x = \text{original input} \), \(y = \text{noisy observation} \)

\[
\begin{align*}
p(x \mid y) &= \frac{p(x, y)}{p(y)} \\
p(y \mid x) &= \frac{p(y, x)}{p(x)} \\
p(x, y) &= p(y, x) \\
p(x \mid y) \times p(y) &= p(y \mid x) \times p(x) \\
p(x \mid y) &= \frac{p(y \mid x) \times p(x)}{p(y)} \quad \text{Bayes Rule}
\end{align*}
\]
Chain Rule

\[p(a, b, c \mid d) = p(a \mid b, c, d) \times p(b \mid c, d) \times p(c \mid d) \]

Approximations: Bias vs. Variance

\[p(a \mid b, c, d) \approx p(a \mid b, c) \text{ less bias} \]
\[p(a \mid b) \]
\[p(a) \text{ less variance} \]

Single Error Spelling Correction

- Insertion (addition)
 - across vs. cress
- Deletion
 - across vs. actress
- Substitution
 - across vs. access
- Transposition (reversal)
 - across vs. caress
Noisy Channel Model for Spelling Correction
(Kernighan, Church and Gale, 1990)

• t is the word with a single typo and c is the correct word

\[
P(c \mid t) = p(t \mid c) \times p(c)
\]

Bayes Rule

• Find the best candidate for the correct word

\[
\hat{c} = \arg \max_{c \in C} P(t \mid c) \times P(c)
\]

\[
P(t \mid c) = ?? \quad P(c) = \frac{f(c)}{N}
\]

C is all the words in the vocabulary; $|C| = N$

Noisy Channel Model for Spelling Correction
(Kernighan, Church and Gale, 1990)

single error, condition on previous letter

\[
P(t \mid c) = \begin{cases}
\frac{\text{del}^{[c_{p-1}, c_p]}_{\text{chars}^{[c_{p-1}, c_p]}}}{\text{chars}^{[c_{p-1}, c_p]}} \text{ (xy)_c typed as (x)_t} \\
\frac{\text{ins}^{[c_{p-1}, c_p]}_{\text{chars}^{[c_{p-1}]} \}}{\text{chars}^{[c_{p-1}]} \}} \text{ (x)_c typed as (xy)_t} \\
\frac{\text{sub}^{[c_{p-1}, c_p]}_{\text{chars}^{[c_p]} \}}{\text{chars}^{[c_p]} \}} \text{ (y)_c typed as (x)_t} \\
\frac{\text{rev}^{[c_{p+1}, c_p]}_{\text{chars}^{[c_{p+1}, c_p]} \}}{\text{chars}^{[c_{p+1}, c_p]} \}} \text{ (xy)_c typed as (yx)_t}
\end{cases}
\]

$t = \text{potion}$
$c = \text{potion}$
$\text{del}[t,i] = 427$
$\text{chars}[t,i] = 575$
$P = .7426$

t = \text{potion}$
$c = \text{piton}$
$\text{sub}[0,i] = 568$
$\text{chars}[t] = 1406$
$P = .4039$
Noisy Channel model for Spelling Correction

- The \textit{del, ins, sub, rev} matrix values need data in which contain known errors \textbf{(training data)}
 - e.g. Birbeck spelling error corpus (from 1984!)
- Accuracy on single errors on unseen data \textbf{(test data)}

Noisy Channel model for Spelling Correction

- Easily extended to multiple spelling errors in a word using edit distance algorithm (however, using learned costs for ins, del, replace)
- Experiments: 87\% accuracy for machine vs. 98\% average human accuracy
- What are the limitations of this model?
 ...
 \textit{was called a “stellar and versatile acres whose combination of sass and glamour has defined her}
 ...
 KCG model best guess is \textbf{acres}