Algorithms for FSMs
(finite-state machines)

- Recognition of a string in a regular language: is a string accepted by an NFA?
- Conversion of regular expressions to NFAs
- Determinization: converting NFA to DFA
- Converting an NFA into a regular expression
- Other useful closure properties: union, concatenation, Kleene closure, intersection
The Lexicon

- Assume we process natural language input in the form of sequences of words
- The sequence is processed to compute some meaningful response or translation
- The role of the lexicon is to associate linguistic information with words of the language
- Many words are ambiguous: with more than one entry in the lexicon
- Information associated with a word in a lexicon is called a lexical entry

Lexicons stored as FSMs

done, 4:- do:V+PP (the turkey was done); done:A (a done deal)
doe, 3:- doe: N (a deer, a female deer; U.S. Dept. of Energy)
Lexicons stored as FSMs

<table>
<thead>
<tr>
<th>DICTIONARIES</th>
<th>Name</th>
<th>FDELAF French V.7</th>
<th>FDELACF Compound</th>
<th>GDELAF General</th>
<th>EDELAF English</th>
<th>IDELAF Italian</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nb of lines</td>
<td>672,000</td>
<td>156,000</td>
<td>828,000</td>
<td>145,000</td>
<td>612,000</td>
</tr>
<tr>
<td></td>
<td>Initial size</td>
<td>21.2 Mb</td>
<td>5.6 Mb</td>
<td>27.9 Mb</td>
<td>3.6 Mb</td>
<td>20 Mb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTOMATA</th>
<th>Nb of states</th>
<th>84,600</th>
<th>322,800</th>
<th>389,650</th>
<th>48,770</th>
<th>78,320</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nb of transitions</td>
<td>181,910</td>
<td>406,570</td>
<td>633,320</td>
<td>101,370</td>
<td>177,350</td>
</tr>
<tr>
<td></td>
<td>Size</td>
<td>23 Mb</td>
<td>7.6 Mb</td>
<td>10 Mb</td>
<td>2.4 Mb</td>
<td>2.4 Mb</td>
</tr>
<tr>
<td></td>
<td>Compacted size</td>
<td>818 Kb</td>
<td>1.88 Mb</td>
<td>2.70 Mb</td>
<td>447 Kb</td>
<td>806 Kb</td>
</tr>
<tr>
<td></td>
<td>Nb of codes</td>
<td>12,200</td>
<td>1.750</td>
<td>14.950</td>
<td>1.590</td>
<td>11.190</td>
</tr>
<tr>
<td></td>
<td>Size of codes</td>
<td>358 Kb</td>
<td>445 Kb</td>
<td>403 Kb</td>
<td>25 Kb</td>
<td>257 Kb</td>
</tr>
<tr>
<td></td>
<td>Total final size</td>
<td>1.2 Mb</td>
<td>1.9 Mb</td>
<td>3.1 Mb</td>
<td>479 Kb</td>
<td>1.1 Mb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME SPENT</th>
<th>Constr. (CRAY)</th>
<th>-</th>
<th>12h40</th>
<th>18h53</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constr. (HP)</td>
<td>12h30</td>
<td>-</td>
<td>-</td>
<td>4'55"</td>
<td>12'30</td>
</tr>
<tr>
<td></td>
<td>Constr. (NEXT)</td>
<td>18'18</td>
<td>-</td>
<td>-</td>
<td>17'</td>
<td>1k20</td>
</tr>
<tr>
<td></td>
<td>Look-up (HP)</td>
<td>90 w/ms</td>
<td>90 w/ms</td>
<td>90 w/ms</td>
<td>90 w/ms</td>
<td>90 w/ms</td>
</tr>
</tbody>
</table>

1/23/12

from (Mohri, 1995)

Simple NL grammars in FSMs

![Diagram of FSM for Numbers 1-99 in English](Image)

Numbers 1-99 in English

1/23/12
Morphology

• Words of a language have similarities between them and regularities within their structure
• A single word can be viewed as made up of smaller units, called morphemes
• free morphemes: act as words in isolation (e.g. think, permanent, local)
• bound morphemes: operate only as parts of other words (e.g. ize, ing, re)
• In English, bound morphemes are usually affixes; suffixes at the end of the word; prefixes at the front
Morphology

- The morpheme that forms the central meaning unit in a word is called the **stem**
- A word is made up of one or more morphemes:
 - *think* stem *think*
 - *rethink* prefix *re*, stem *think*
 - *localize* stem *local*, suffix *ize*
 - *delexicalize* prefix *de*, stem *lexical*, suffix *ize*

Inflectional Morphology

- Assume we want to represent the fact that English nouns form plurals (to avoid duplication in dictionaries)
- Very simple type of grammar development
- The plural:
 - cat+*N*+*PL* := *cats*
 - dog+*N*+*PL* := *dogs*, etc.
- Exceptions:
 - fox+*N*+*PL* := *foxes*
 - mouse+*N*+*PL* := *mice*
- Exercise: draw an FSM to represent the 4 words above *and* their plurals. Condition: only use a single transition for the plural suffix *+s*
FSM for simple morphology

- Problem: represents foxes as foxs
- Not a pure irregular case like mouse/mice
- e.g. pass/passes, fax/faxes, suffix/suffixes
- We will revisit this problem with a model more powerful than FSMs
FSM for simple morphology

• Lessons from grammar development:
 – Many regular cases (captured by a simple rule)
 – Some exceptional cases (*mice*) that are irregular and have no simple generative rule
 – Some cases that appear irregular but are rules that apply in the right context
• These observations are pervasive in grammar development (for other modules of natural language)

Derivational morphology

• Some suffixes can change the part of speech for a word, e.g. demon/N demonize/V
• We will write demonize/V as demon+ize/V to emphasize the suffix addition
• Notation, N: noun V: verb A: adjective
• Draw an NFA for the following data (transitions on morphemes):
 demon/N demon+ize/V demon+ize+ation/N
 demon+ize+able/A demon+ize+er/N
 formal/A formal+ity/N formal+ness/N
Derivational morphology

- Now modify the original NFA to accept the following additional strings:
 formal+ize/V formal+ize+ation/N
 formal+ize+able/A formal+ize+er/N
 demon+ize+able+ity/N
- Note that we assume that *demon+ize+able+ity* is mapped to *demonizability*
Derivational morphology

Capturing the derivation of a part of speech:
Map states to symbols

Morphology and lexicons

- Constructing a lexicon can benefit from the morphological analysis of words
- Especially in languages with productive morphology. For example, in Turkish:

uygarlaştıramadıklarımızdanmışsınızcasına
uygar + laş +tır + ama + dik + lar
civilized + “become” + “to cause” + “not able” + ppart + pl
+ ımız + dan + mış + mız + casına
+ 1stpers possessive + “from/among” + past + 2nd person pl + adverbial

(behaving) as if you are among those whom we could not cause to become civilized
Morphology and lexicons

• Morphology is useful for lexicons:
 – Smaller size for the lexicons: various forms are computed by applying a rule rather than storing all possible forms
 – Ease of entering data: only the stem and category needs to be added and all possible forms are computed
 – New word forms (perhaps previously unknown to the lexicon builder) are produced. e.g. demonizability
 – Simpler and faster lookup (when using finite-state methods)

Summary

• Some aspects of morphology can be captured in a FSM, e.g. cat+N+PL := cats
• Other aspects are not elegantly captured. We have to create a sub-class for words like fox+N+PL := foxes and treat them differently
• Algorithms for FSMs can be used to recognize/generate/store these simple linguistic forms