Formal Languages: Recap

- Symbols: a, b, c
- Alphabet: finite set of symbols $\Sigma = \{a, b\}$
- String: sequence of symbols bab
- Empty string: ε Define: $\Sigma^\varepsilon = \Sigma \cup \{\varepsilon\}$
- Set of all strings: Σ^* cf. *The Library of Babel*, Jorge Luis Borges
- (Formal) Language: a set of strings
 \[
 \{ a^n b^n : n > 0 \}
 \]
Regular Languages

• The set of regular languages: each element is a regular language
• Each regular language is an example of a (formal) language, i.e. a set of strings
e.g. \{ a^m b^n : m, n \text{ are } +\text{ve integers} \}

Regular Languages

• Defining the set of all regular languages:
 • The empty set and \{a\} for all \(a \in \Sigma^*\) are regular languages
 • If \(L_1\) and \(L_2\) and \(L\) are regular languages, then:
 \(L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}\) (concatenation)
 \(L_1 \cup L_2\) (union)
 \(L^* = \bigcup_{i=0}^{\infty} L^i\) (Kleene closure)
 are also regular languages
• There are no other regular languages
Formal Grammars

- A formal grammar is a concise description of a formal language
- A formal grammar uses a specialized syntax
- For example, a **regular expression** is a concise description of a regular language

\[(alb)^*abb\] is the set of all strings over the alphabet \(\{a, b\}\) which end in \(abb\)

Regular Expressions: Definition

- Every symbol of \(\Sigma \cup \{\varepsilon\}\) is a regular expression
- If \(r_1\) and \(r_2\) are regular expressions, so are
 - Concatenation: \(r_1 r_2\)
 - Alternation: \(r_1 | r_2\)
 - Repetition: \(r_1^*\)
- Nothing else is.
 - Grouping re’s: e.g. \(aalbc\) vs. \(((aa)lb)c\)
Regular Expressions: Examples

- Alphabet \{ V, C \} V: vowel C: consonant
- A set of consonant-vowel sequences \((CV|CCV)^*\)
- All strings that do not contain “VC” as a substring \(C^*V^*\)
- Need a decision procedure: does a particular regular expression (regexp) accept an input string
- Provided by: Finite State Automata

Finite Automata: Recap

- A set of states \(S\)
 - One start state \(q_0\), zero or more final states \(F\)
- An alphabet \(\Sigma\) of input symbols
- A transition function:
 - \(\delta: S \times \Sigma \Rightarrow S\)
- Example: \(\delta(1, a) = 2\)
Finite Automata: Example

• What regular expression does this automaton accept?

Answer: (0|1)*00

NFAs

• NFA: like a DFA, except
 – A transition can lead to more than one state, that is, \(\delta: S \times \Sigma \Rightarrow 2^S \)
 – One state is chosen non-deterministically
 – Transitions can be labeled with \(\varepsilon \), meaning states can be reached without reading any input, that is,
 \[\delta: S \times \Sigma \cup \{ \varepsilon \} \Rightarrow 2^S \]
Recognition of strings (NFAs)

- Input string: aba#
- Recognition problem: Is input string in the language generated by the NFA?
- Recognition (without conversion to DFA) is also called *simulation* of NFA

Input tape: 0 a 1 b 2 a 3 # 4
Start State: A
Agenda: \{ (A, 0) \}

Pop (A, 0) from Agenda

q(A, a) = B
Agenda: \{ (B, 1) \}

Pop (B, 1) from Agenda

q(B, b) = \{ D, C \}
Agenda: \{ (D, 2), (C, 2) \}
Recognition of strings (NFAs)

- Input tape: \(0 \ a \ 1 \ b \ 2 \ a \ 3 \ # \ 4\)
- Pop \((D, 2)\) from Agenda
- \(q(D, a) = \{ B \}\) Agenda: \{ \(B, 3\), \(C, 2\) \}
- Pop \((B, 3)\) from Agenda: \(B\) is not a final state
- Pop \((C, 2)\) from Agenda: if Agenda empty, reject
- \(q(C, a) = \{ D \}\) Agenda: \{ \(D, 3\) \}

Recognition of strings (NFAs)

- Input tape: \(0 \ a \ 1 \ b \ 2 \ a \ 3 \ # \ 4\)
- Pop \((D, 3)\) from Agenda
- Is \((D, 3)\) an accept item?
- Yes: \(D\) is a final state and \(3\) is index of the end-of-string marker #
- Return accept
Recognition of strings (NFAs)

function NDRecognize (tape[], q):
 Agenda = { (start-state, 0) }
 Current = (state, index) = pop(Agenda)
 while (true) {
 if (Current is an accept item) return accept
 else Agenda = Agenda \cup GenStates(q, state, tape[index])
 if (Agenda is empty) return reject
 else Current = (state, index) = pop(Agenda)
 }

function GenStates (q, state, index):
return { (q’, index) : for all q’ = q(state, ε) } \cup
{ (q’, index+1) : for all q’ = q(state, tape[index+1]) }

Algorithms for FSMs
(finite-state machines)

• Recognition of a string in a regular language: is a string accepted by an NFA?
• Conversion of regular expressions to NFAs
• Determinization: converting NFA to DFA
• Converting an NFA into a regular expression
• Other useful closure properties: union, concatenation, Kleene closure, intersection