Finite-state transducers

• a : 0 is a notation for a mapping between two alphabets a ∈ Σ₁ and 0 ∈ Σ₂
• Finite-state transducers (FSTs) accept pairs of strings
• Finite-state automata equate to regular languages and FSTs equate to regular relations
• e.g. L = \{ (xⁿ, yⁿ) : n > 0, x ∈ Σ₁ and y ∈ Σ₂ \} is a regular relation accepted by some FST. It maps a string of x’s into an equal length string of y’s
Finite-state transducers

\[R(T_1) = R(T_2) = \{ (aa, 10), (ab, 1) \} \]
Finite-state transducers

Regular relations

• A generalization of regular languages
• The set of regular relations is:
 – The empty set and \((x,y)\) for all \(x, y \in \Sigma_1 \times \Sigma_2\) is a regular relation
 – If \(R_1, R_2\) and \(R\) are regular relations then:
 \[R_1 \cdot R_2 = \{(x_1x_2, y_1y_2) \mid (x_1, y_1) \in R_1, (x_2, y_2) \in R_2\}\]
 \[R_1 \cup R_2\]
 \[R^* = \bigcup_{i=0}^{\infty} R_i\]
 – There are no other regular relations
Finite-state transducers

- Formal definition:
 - Q: finite set of states, $q_0, q_1, ..., q_n$
 - Σ: alphabet composed of input/output pairs $i:o$
 where $i \in \Sigma_1$ and $o \in \Sigma_2$ and so $\Sigma \subseteq \Sigma_1 \times \Sigma_2$
 - q_0: start state
 - F: set of final states
 - $\delta(q, i:o)$ is the transition function which returns a set of states

Finite-state transducers: Examples

- (a^n, b^n): map n a’s into n b’s
- rot13 encryption (the Caesar cipher): assuming 26 letters each letter is mapped to the letter 13 steps ahead (mod 26), e.g. $cipher \rightarrow pvcure$
- reversal of a fixed set of words
- reversal of all strings upto fixed length k
- input: binary number n, and output: binary number $n+1$
- upcase or lowercase a string of any length
- *Pig latin: pig latin is goofy \rightarrow igpay atinlay is oofygay
- *convert numbers into pronunciations,
 e.g. 230.34 two hundred and thirty point three four
Finite-state transducers

• Following relations are cannot be expressed as a FST
 – \((a^n b^n, c^n)\): because \(a^n b^n\) is not regular
 – reversal of strings of any length
 – \(a^i b^j \rightarrow b^j a^i\) for any \(i, j\)

• Unlike regular languages, regular relations are not closed under intersection
 – \((a^n b^n, c^n) \cap (a^n b^n, c^n)\) produces \((a^n b^n, c^n)\)
 – However, regular relations with input and output of equal lengths are closed under intersection

Regular Relations Closure Properties

• Regular relations (rr) are closed under some operations
• For example, if \(R_1, R_2\) are regular relns:
 – union \((R_1 \cup R_2\) results in \(R_3\) which is a rr
 – concatenation
 – iteration \((R_1^+ = one or more repeats of R_1)\)
 – Kleene closure \((R_1^* = zero or more repeats of R_1)\)
• However, unlike regular languages, regular relns are not closed under:
 – intersection (possible for equal length regular relns)
 – complement
Regular Relations Closure Properties

• New operations for regular relations:
 – composition
 – project input (or output) language to regular language; for FST t, input language = $\pi_1(t)$, output = $\pi_2(t)$
 – take a regular language and create the identity regular relation; for FSM f, let FST for identity relation be $\text{Id}(f)$
 – take two regular languages and create the cross product relation; for FSMs $f \& g$, FST for cross product is $f \times g$
 – take two regular languages, and mark each time the first language matches any string in the second language

Regular Relation/FST
Kleene Closure

3/19/12
Regular Expressions for FSTs

\[(a:c) (b:d)^*\]

\[(a:c (b:d)^*) \mid (e:g)^* f:h\]
\[(\text{a:0} \lor \text{a:1}) \ (\text{b:0} \lor \text{b:1}) \)^* \]
Subsequential FSTs

Sequential transducer = transducer with deterministic input

\[
\begin{align*}
&\text{input: abbaa} & \text{output: bbab} \\
&0 & 1 & a:b & b:b & a:ba
\end{align*}
\]

\(p\)-subsequential transducer = transducer with at most \(p\) output strings at each final state

\[
\begin{align*}
&\text{input: aa} & \text{ambiguous output:} \\
&0 & 1 & 2 & 3 & a:a & a:a & a:a & a:a & \{ \text{aaa, aab} \}
\end{align*}
\]

Subsequential FSTs

- Consider an FST in which for every symbol scanned from the input we can deterministically choose a path and produce an output.
- Such an FST is analogous to a deterministic FSM. It is called a **subsequential** FST.
- Subsequential transducers with \(p\) outputs on the final state is called a **\(p\)-subsequential** FST.
- \(p\)-subsequential FSTs can produce ambiguous outputs for a given input string.
FST that is not subsequential

Input: x^n
Output: a^n if n is even, else b^n

FST Algorithms

- **Compose**: Given two FSTs f and g defining regular relations R_1 and R_2, create the FST $f \circ g$ that computes the composition: $R_1 \circ R_2$
- **Recognition**: Is a given pair of strings accepted by FST r?
- **Transduce**: Given an input string, provide the output string(s) as defined by the regular relation provided by an FST
Composing FSTs

on input side:
$a^n \equiv a^*$

What is T_1 composed with T_2, aka $T_1 \circ T_2$?

Composing FSTs
Composing FSTs

(0,0) (1,1) a : a (0,0) (2,1) b : a
(0,1) (1,2) a : a (0,1) (2,2) b : a
(2,0) (3,1) b : a (2,1) (3,2) b : a

start with pair of final states

Composing FSTs

(0,0) (1,1) a : a (0,0) (2,1) b : a
(0,1) (1,2) a : a (0,1) (2,2) b : a
(2,0) (3,1) b : a (2,1) (3,2) b : a

start with pair of final states
Composing FSTs

1. Composing FSTs

\[
\begin{align*}
(0,0) \times (1,1) & : a \\
(0,1) \times (1,2) & : a \\
(2,0) \times (3,1) & : a
\end{align*}
\]

Composing FSTs

\[
\begin{align*}
(0,0) \times (1,1) & : a \\
(0,1) \times (1,2) & : a \\
(2,0) \times (3,1) & : a
\end{align*}
\]

Composing FSTs

\[
\begin{align*}
(0,0) \times (1,1) & : a \\
(0,1) \times (1,2) & : a \\
(2,0) \times (3,1) & : a
\end{align*}
\]
Composing FSTs

\[T_1 \circ T_2: \]

\[\begin{array}{c}
0,0 \\
| \quad | \quad |
\hline
a:a \rightarrow 1,1 \quad b:c\quad \text{ab} := \text{ac} \\
| \quad | \quad | \\
b:a \rightarrow 2,1 \quad b:a \quad \text{bb} := \text{aa}
\end{array} \]

Composing FSTs

\[(a:c \ (b:d)^*) \mid (e:g)^* \ f:h \]

\[g:i \ \varepsilon:j \ (h:k)^* \]

\[e:i \ \varepsilon:j \ f:k \]
FST Composition

- Input: transducer \(S \) and \(T \)
- Transducer composition results in a new transducer with states and transitions defined by matching compatible input-output pairs:

\[
\text{match}(s,t) = \left\{ \begin{array}{l}
(s,t) \rightarrow^{x,z}(s',t') : s \rightarrow^{x,y} s' \in S.\text{edges} \text{ and } t \rightarrow^{y,z} t' \in T.\text{edges} \\
(s.t) \rightarrow^{x,y}(s',t) : s \rightarrow^{x,t} s' \in S.\text{edges} \\
(s,t) \rightarrow^{x,t}(s',t') : t \rightarrow^{y,t} t' \in T.\text{edges} \\
\end{array} \right\} \cup
\]

- Correctness: any path in composed transducer mapping \(u \) to \(w \) arises from a path mapping \(u \) to \(v \) in \(S \) and path mapping \(v \) to \(w \) in \(T \), for some \(v \)

Complex FSTs with composition

- Take, for example, the task of constructing an FST for the Soundex algorithm
- Soundex is useful to map spelling variants of proper names to a single code (hashing names)
- It depends on a mapping from letters to codes
Soundex

• Mapping from letters to numbers:

b, f, p, v \rightarrow 1

c, g, j, k, q, s, x, z \rightarrow 2

d, t \rightarrow 3

l \rightarrow 4

m, n \rightarrow 5

r \rightarrow 6

Soundex

• The Soundex algorithm:

 – If two or more letters with the same number are adjacent in the input, or adjacent with intervening h’s or w’s omit all but the first

 – Retain the first letter and delete all occurrences of a, e, h, i, o, u, w, y

 – Except for the first letter, change all letters into numbers

 – Convert result into LNNN (letter and 3 numbers), either truncate or add 0s
Soundex

- Example:
 - *Losh-shkan, Los-qam*
 - *Loshhkan, Losqam*
 - *Lskn, Lsqm*
 - L225, L225

- Other examples:
 - Euler (E460), Gauss (G200), Hilbert (H416), Knuth (K530), Lloyd (L300), Lukasiewicz (L222), and Wachs (W200)

How can we implement Soundex as a FST?
- For each step in Soundex, the FST is quite simple to write
- Writing a single FST from scratch that implements Soundex is quite challenging
- A simpler solution is to build small FSTs, one for each step, and then use FST composition to build the FST for Soundex
FST that is not subsequential

Input: x^n
Output: a^n if n is even, else b^n

Conversion to subsequential FST

Input: x^n
- Step1 output: $(x1/x2)*x2$ if n is even, else $(x1/x2)*x1$
- Step2 output: reversal of Step1 output
- Step3 output: a^n if n is even, else b^n

Interesting fact: this can be done for any non-subsequential FST to convert it into a subsequential FST
Recognition of string pairs

function FSTRecognize (input[], output[], δ):
 Agenda = { (start-state, 0, 0) }
 Current = (state, i, o) = pop(Agenda) // i := inputIndex, o := outputIndex
 while (true) {
 if (Current is an accept item) return accept
 else Agenda = Agenda ∪ GenStates(δ, state, input, output, i, o)
 if (Agenda is empty) return reject
 else Current = (state, i, o) = pop(Agenda)
 }

function GenStates (δ, state, input[], output[], i, o):
 return { (q, i, o) : for all q ∈ δ(state, ε:ε) } ∪
 { (q, i, o+1) : for all q ∈ δ(state, ε:output[i+1]) } ∪
 { (q, i+1, o) : for all q ∈ δ(state, input[i+1]:ε) } ∪
 { (q, i+1, o+1) : for all q ∈ δ(state, input[i+1], output[i+1]) }

Transduction: input → output

- The transduce operation for a FST t can be simulated efficiently using the following steps:
 1. Convert the input string into a FSM f (the machine only accepts the input string, nothing else).
 2. Convert f into a FST by taking $\text{Id}(f)$ and compose with t to give a new FST $g = \text{Id}(f) \circ t$. (note that g only contains those paths compatible with input f)
 3. Finally project the output language of g to give a FSM for the output of transduce: $\pi_2(g)$
 4. Optionally, eliminate any transitions that only derive the empty string from the $\pi_2(g)$ FST.
- What follows is an alternate version that attempts to produce all output strings
Transduction: input \rightarrow output

$\text{agenda: } \{ (0, 0, []) \}$
$\text{agenda: } \{ (1, 1, [d]), (2, 1, [c]) \}$
$\text{agenda: } \{ (2, 1, [c]), (3, 2, [d \oplus c]) \}$
$\text{agenda: } \{ (3, 2, [d \oplus c, c \oplus d]) \}$
$\text{agenda: } \{ (3, 2, [dc, cd]) \}$

$(3, 2, [dc, cd]) \text{ is an accept item: output } = dc, cd$

Transduction: input \rightarrow output

function FST\text{transduce} (input[, δ]):

Agenda = $\{ (\text{start-state}, 0, []) \}$ // each item contains list of partial outputs
Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list
output = ()
while (true) {
 if (Current is an accept item) output \oplus out
 else Agenda = Agenda \cup GenStates(δ, state, input, out, i)
 if (Agenda is empty) return output
 else Current = (state, i, o) = pop(Agenda)
}

3/19/12
Transduction: input → output

function FSTTransduce (input[], δ):
 Agenda = { (start-state, 0, []) } // each item contains list of partial outputs
 Current = (state, i, out) = pop(Agenda) // i : inputIndex, out : output-list
 output = ()
 while (true) {
 if (Current is an accept item) output ⊕ out
 else Agenda = Agenda ∪ GenStates(δ, state, input, out, i)
 if (Agenda is empty) return output
 else Current = (state, i, o) = pop(Agenda)
 }

function GenStates (δ, state, input, out, i):
 return { (q, i, out) : for all q ∈ δ(state, ε:i) } ∪
 { (q, i, out ⊕ newOut) : for all q ∈ δ(state, ε:newOut) } ∪
 { (q, i+1, out) : for all q ∈ δ(state, input[i+1]:ε) } ∪
 { (q, i+1, out ⊕ newOut) : for all q ∈ δ(state, input[i+1], newOut) }
Transduction: input \rightarrow output

function FSTTransduce (input[], δ):
 Agenda = { (start-state, 0, []) } // each item contains list of partial outputs
 Current = (state, i, out) = pop(Agenda) // i :- inputIndex, out :- output-list
 output = ()
 while (true) {
 if (Current is an accept item) output \oplus out
 else Agenda = Agenda \cup GenStates(δ, state, input, out, i)
 if (Agenda is empty) return output
 else Current = (state, i, o) = pop(Agenda)
 }

function GenStates (δ, state, input, out, i):
 return
 { (q, i, out) : for all $q \in \delta$(state, ε:ε) }
 \cup
 { (q, i, out \oplus newOut) : for all $q \in \delta$(state, ε:newOut) }
 \cup
 { (q, i+1, out) : for all $q \in \delta$(state, input[i+1]:ε) }
 \cup
 { (q, i+1, out \oplus newOut) : for all $q \in \delta$(state, input[i+1], newOut) }

Cross-product FST

• For regular languages L_1 and L_2, we have two FSAs, M_1 and M_2

 $M_1 = (\Sigma, Q_1, q_1, F_1, \delta_1)$
 $M_2 = (\Sigma, Q_2, q_2, F_2, \delta_2)$

• Then a transducer accepting $L_1 \times L_2$ is defined as:

 $T = (\Sigma, Q_1 \times Q_2, \langle q_1, q_2 \rangle, F_1 \times F_2, \delta)$

 $\delta(\langle s_1, s_2 \rangle, a, b) = \delta_1(s_1, a) \times \delta_2(s_2, b)$

 for any $s_1 \in Q_1, s_2 \in Q_2$ and $a, b \in \Sigma \cup \{\varepsilon\}$
Summary

- Finite state transducers specify regular relations
 - Encoding problems as finite-state transducers
- Extension of regular expressions to the case of regular relations/FSTs
- FST closure properties: union, concatenation, composition
- FST special operations:
 - creating regular relations from regular languages (Id, cross-product);
 - creating regular languages from regular relations (projection)
- FST algorithms
 - Recognition, Transduction
 - Determinization, Minimization? (not all FSTs can be determinized)