Finite-state transducers

• Many applications in computational linguistics

• Popular applications of FSTs are in:
 – Orthography
 – Morphology
 – Phonology

• Other applications include:
 – Grapheme to phoneme
 – Text normalization
 – Transliteration
 – Edit distance
 – Word segmentation
 – Tokenization
 – Parsing
Orthography and Phonology

• Orthography: written form of the language (affected by morpheme combinations)
 move + ed → moved
 swim + ing → swimming S W I H1 M I H0 NG

• Phonology: change in pronunciation due to morpheme combinations (changes may not be confined to morpheme boundary)
 intent I H2 N T E H1 N T + ion
 → intention I H2 N T E H1 N C H A H0 N

Orthography and Phonology

• Phonological alternations are not reflected in the spelling (orthography):
 – Newton Newtonian
 – maniac maniacal
 – electric electricity

• Orthography can introduce changes that do not have any counterpart in phonology:
 – picnic picnicking
 – happy happiest
 – gooey gooiest
Segmentation and Orthography

• To find entries in the lexicon we need to segment any input into morphemes
• Looks like an easy task in some cases:
 looking \rightarrow look + ing
 rethink \rightarrow re + think
• However, just matching an affix does not work:
 *thing \rightarrow th + ing
 *read \rightarrow re + ad
• We need to store valid stems in our lexicon
 what is the stem in assassination (assassin and not nation)

Porter Stemmer

• A simpler task compared to segmentation is simply stripping out all affixes (a process called stemming, or finding the stem)
• Stemming is usually done without reference to a lexicon of valid stems
• The Porter stemming algorithm is a simple composition of FSTs, each of which strips out some affix from the input string
 – input=..ational, produces output=..ate (relational \rightarrow relate)
 – input=..V..ing, produces output=ε (motoring \rightarrow motor)
Porter Stemmer

- False positives (stemmer gives incorrect stem):
 - doing → doe, policy → police
- False negatives (should provide stem but does not):
 - European → Europe, matrices → matrix

I'm a rageaholic. I can't live without rageahol.
 Homer Simpson, from The Simpsons
- Despite being linguistically unmotivated, the Porter stemmer is used widely due to its simplicity (easy to implement) and speed

Segmentation and orthography

- More complex cases involve alterations in spelling
 - foxes → fox + s [*e-insertion*]
 - loved → love + ed [*e-deletion*]
 - flies → fly + s [*y to i, e-insertion*]
 - panicked → panic + ed [*k-insertion*]
 - chugging → chug + ing [*consonant doubling*]
 - *singging* → sing + ing
 - impossible → in + possible [*n to m*]
- Called *morphographemic* changes.
- Similar to but not identical to changes in pronunciation due to morpheme combinations
Morphological Parsing with FSTs

• Think of the process of decomposing a word into its component morphemes in the reverse direction: as generation of the word from the component morphemes
• Start with an abstract notion of each morpheme being simply combined with the stem using concatenation
 – Each stem is written with its part of speech, e.g. cat+N
 – Concatenate each stem with some suffix information, e.g. cat+N+PL
 – e.g. cat+N+PL goes through an FST to become cats (also works in reverse!)

Morphological Parsing with FSTs

• Retain simple morpheme combinations with the stem by using an intermediate representation:
 – e.g. cat+N+PL becomes cat^s#
• Separate rules for the various spelling changes. Each spelling rule is a different FST
• Write down a separate FST for each spelling rule

 - foxes :: fox^s# [e-insertion FST]
 - loved :: love^ed# [e-deletion FST]
 - flies :: fly^s# [y to i, e-insertion FST]
 - panicked :: panic^ed# [k-insertion FST] (arced::arc^ed#)??

 etc.
Lexicon FST (stores stems)

move: reg-noun-stem
fly: reg-noun-stem
fox: reg-noun-stem
mouse: irreg-sg-noun-form
mice: irreg-pl-noun-form

Compose the above lexicon FST with some inflection FST

This machine relates intermediate forms like fox^s# to underlying lexical forms like fox+N+PL

<table>
<thead>
<tr>
<th>Lexical</th>
<th>Intermediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>f ox</td>
<td>f o x</td>
</tr>
<tr>
<td>+N</td>
<td>^s#</td>
</tr>
<tr>
<td>+PL</td>
<td>#</td>
</tr>
</tbody>
</table>
• The label *other* means pairs not use anywhere in the transducer.
• Since # is used in a transition, q_0 has a transition on # to itself.
• States q_0 and q_1 accept default pairs like $(cat^s#, cats#)$
• State q_5 rejects incorrect pairs like $(fox^s#, foxs#)$

e-insertion FST

• Run the e-insertion FST on the following pairs:

 $(fir#, fir#)$
 $(fizz^s#, fizzes#)$
 $(firs#, fir#)$
 $(fizz^s#, fizzes#)$
 $(firing#, fizzing#)$

 • Find the state the FST reaches after attempting to accept each of the above pairs
 • Is the state a final state, i.e. does the FST accept the pair or reject it
• We first use an FST to convert the lexicon containing the stems and affixes into an intermediate representation
• We then apply a spelling rule that converts the intermediate form into the surface form
• **Parsing**: takes the surface form and produces the lexical representation
• **Generation**: takes the lexical form and produces the surface form
• But how do we handle multiple spelling rules?

![Diagram](image.png)

Method 1: Composition

write one FST for each spelling rule: each FST has to provide input to next stage
Method 2: Intersection

Creating one FST implies we have to do **FST intersection** (but there’s a catch: what is it?)

Write each FST as an equal length mapping (ε is taken to be a real symbol)

Intersecting/Composing FSTs

- Implement each spelling rule as a separate FST
- We need slightly different FSTs when using Method 1 (composition) vs. using Method 2 (intersection)
 - In Method 1, each FST implements a spelling rule if it matches, and transfers the remaining affixes to the output (composition can then be used)
 - In Method 2, each FST computes an equal length mapping from input to output (intersection can then be used). Finally compose with lexicon FST and input.
- In practice, composition can create large FSTs
Length Preserving “two-level” FST for *e-deletion*

Stems/Lexicon

```
move ^ ed
move ε ed
```

\[
\text{other}_1 = \Sigma - \{e,v\}
\]

\[
\text{other}_2 = \Sigma - \{e,v,^\}
\]

Should also work for leaving :: leave^ing

Motivation for using FSTs

- We have provided a formal device of FSTs that enables “finite-state” translations
- Translations of this kind are useful in many different contexts in computational linguistics (and beyond)
- But why use such a theoretically well-defined model -- why not use common programming language devices for translation?
REGEX v.s. FST

• The common method for string translations is the REGEX extension of regular expressions: allows match & replace

• For example, to perform e-insertion we would:
 > infstem = 'fox+N+PL'
 > inter = re.sub('\+N\+PL$', '^s#', infstem)
 > inter == 'fox^s#'
 > final = re.sub('([szx])\^s#', r'\1es', inter)
 > final == 'foxes'

• Seems simple enough -- why bother with FSTs?
• REGEX algorithms are exponential-time, FSTs are linear time -- sometimes theory is useful in practice!
• Can we retain the useful notation of REGEX expressions?

Rewrite Rules

• Context dependent rewrite rules: \(\alpha \rightarrow \beta / \lambda _ _ \rho \)
 – \((\lambda, \alpha, \rho \rightarrow \lambda, \beta, \rho); \text{that is } \alpha \text{ becomes } \beta \text{ in context } \lambda _ _ \rho\)
 – \(\alpha, \beta, \lambda, \rho\) are regular expressions, \(\alpha = \text{input, } \beta = \text{output}\)
 – e.g. \(\alpha = (ab)\) means input is either \(a\) or \(b\), and \(\beta = (alb)\) means the output is ambiguous: should be either \(a\) or \(b\)

• How to apply rewrite rules:
 – Consider rewrite rule: \(a \rightarrow b / a b _ _ _ _ _ b a\)
 – Apply rule on string \(abababababa\)
 – Three different outcomes are possible:
 • \(abbbabbbababa\) (left to right, iterative)
 • \(abbbabbbababa\) (right to left, iterative)
 • \(ababbbabbbababa\) (simultaneous)
Rewrite Rules

\[u \rightarrow i / i \cdot C^* _ \]

\((u \rightarrow i / \Sigma^* i \cdot C^* _ \Sigma^*) \)

Input: kikukuku

\textit{from (R. Sproat slides)}

Rewrite Rules

\[u \rightarrow i / i \cdot C^* _ \text{ kikukuku} \]

\text{output of one application feeds next application}

\text{left to right application}
Rewrite Rules

\[u \rightarrow i / i C^* _ \quad \text{kikukuku} \]
\[\text{kikukuku} \]
\[\text{kikukuku} \]
\[\text{kikukuku} \]
\[\text{kikikiku} \]
\[\text{kikikiki} \]

 right to left application

simultaneous application

(context rules apply to input string only)
Rewrite Rules

• Example of the e-insertion rule as a rewrite rule:
 \[\varepsilon \rightarrow e / (x | s | z)^_s\# \]

• Rewrite rules can be optional or obligatory
• Rewrite rules can be ordered wrt each other
• This ensures exactly one output for a set of rules

Rewrite Rules

• Rule 1: iN → im / (p | b | m)
• Rule 2: iN → in / __
• Consider input inpractical (N is an abstract nasal phoneme)
• Each rule has to be obligatory or we get two outputs: impractical and inpractical
• The rules have to be ordered wrt to each other so that we get impractical rather than inpractical as output
• The order also ensures that intractable gets produced correctly
Example: Finnish Harmony

<table>
<thead>
<tr>
<th>Gloss</th>
<th>Nominative</th>
<th>Partitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>• sky</td>
<td>• taivas</td>
<td>• taivas+ta</td>
</tr>
<tr>
<td>• telephone</td>
<td>• puhelin</td>
<td>• puhelin+ta</td>
</tr>
<tr>
<td>• plain</td>
<td>• lakeus</td>
<td>• lakeut+ta</td>
</tr>
<tr>
<td>• reason</td>
<td>• syy</td>
<td>• syy+tä</td>
</tr>
<tr>
<td>• short</td>
<td>• lyhyt</td>
<td>• lyhyt+tä</td>
</tr>
<tr>
<td>• friendly</td>
<td>• ystävällinen</td>
<td>• ystävällinen+tä</td>
</tr>
</tbody>
</table>

\emph{i, e} are neutral wrt harmony

Rewrite Rules

- Context dependent rewrite rules: $\alpha \rightarrow \beta / \lambda __ \rho$
- Can express context sensitive rules or regular relations
- Computational constraints on rewrite rules:
 - Consider rewrite rule: $c \rightarrow acb / a __ b$
 - Apply left to right iteratively on base-form c
 - Produces a sequence of strings:

\[a \ a \ a \ c \ b \ b \ b \]

Long distance effects, but still possible to model as “finite-state” translation

Do we need such long-distance effects in morphophonological rules?
Rewrite Rules

• In a rewrite rule: \(\alpha \rightarrow \beta / \lambda __ \rho \)

• Rewrite rules are interpreted so that the input \(\alpha \) does not match something introduced in the previous rule application

• However, we are free to match the context either \(\lambda \) or \(\rho \) or both with something introduced in the previous rule application (see previous examples)

• Impose a simple constraint on how rewrite rules are applied: output cannot be re-written

e.g. \(c \rightarrow a_b / a __ b \)

Rewrite Rules

• We cannot apply output of a rule as input to the rule itself iteratively:

 \[c \rightarrow acb / a __ b \]

 If we allow this, the above rewrite rule will produce \(a^n c b^n \) for \(n \geq 1 \)

 which is not regular

 Why? Because we rewrite the \(c \) in \(acb \) which was introduced in the previous rule application

 Matching the \(a_b \) as left/right context in \(acb \) is ok

• Kaplan and Kay constraints:

 – Constraint ensures rewrite rules are equivalent to regular relations

 – Naturally expresses the local nature of “finite-state” translation

 – Under these conditions, these rewrite rules are equivalent to FSTs
Rewrite Rules to FSTs

\[V \rightarrow i / i C^* \quad _ \]
\[V \rightarrow u / u C^* \quad _ \]

* kikukuku
\checkmark kikikikiki

In this example, V and C are actual symbols in the input

Rewrite rules to FSTs

\[u \rightarrow i / \Sigma^* i C^* \quad _ \quad \Sigma^* \]
(example from R. Sproat’s slides)

- Input: kikukupapu (use left-right iterative matching)
- Mark all possible right contexts
 \[> k > i > k > u > k > u > p > a > p > u > \]
- Mark all possible left contexts
 \[> k > i < k < u > k > u > p > a > p > u > \]
- Change u to i when delimited by \(<\)
 \[> k > i < k < i > k > u > p > a > p > u > \]
- But the next u is not delimited by \(<\) and so cannot be changed even though the rule matches

First try: does not work for iterative matching
Rewrite rules to FSTs

\[u \rightarrow i / \Sigma^* \ i \ C^* \ i \ C^* \Sigma^* \]

- Input: kikukupapu
- Mark all possible right contexts
 \[> k > i > k > u > k > u > p > a > p > u > \]
- Mark all \(u \) followed by \(> \) with \(<_1 \) and \(<_2 \)
 \[k > i > k > <_1 u > k > <_1 u > p > a > p > <_1 u > \]
 \[<_2 u <_2 u <_2 u \]
- Change all \(u \) to \(i \) when delimited by \(<_1 > \)
 \[k > i > k > <_1 i > k > <_1 i > p > a > p > <_1 i > \]
 \[<_2 u <_2 u <_2 u \]
- Delete \(> \)
 \[k \ i \ k <_1 i \ k <_1 i \ p \ a \ p <_1 i \]
 \[<_2 u <_2 u <_2 u \]
- Only allow \(i \) where \(<_1 \) is preceded by \(iC^* \), delete \(<_1 \)
 \[k \ i \ k \ i \ p \ a \ p \]
 \[<_2 u <_2 u <_2 u \]
- Allow only strings where \(<_2 \) is not preceded by \(iC^* \),
 delete \(<_2 \)
 \[k \ i \ k \ i \ p \ a \ p \ u \]
Rewrite Rules to FST

- Mark right contexts: $a > b$ $a > b > b$
- Mark a and b before $>$ with $<_1$ and $<_2$

 $<_1 a > b$ $<_1 a ><_1 b > b$

 $<_2 a$ $<_2 a$ $<_2 b$
- Match $<_1$ LHS $>$ and convert to $<_1$ RHS $>$; delete $>$

 $<_1 b b$ $<_1 b$ $<_1 a b$

 $<_2 a$ $<_2 a$ $<_2 b$
- Allow $<_1$ RHS when left context exists; delete $<_1$

 $<_1 b b$ $<_1 b$ $<_1 a b$ $=<_1 a b (b | <_1 a) (b | <_2 b)$

 $<_2 a$ $<_2 a$ $<_2 b$
- Allow $<_2$ LHS when left context does not exist; delete $<_2$

 $a b b a b$

Rewrite rules to FST

- For every rewrite rule: $\alpha \rightarrow \beta / \lambda __ \rho$:
- FST r that inserts $>$ before every ρ

 $r = \varepsilon \rightarrow > / \Sigma^* __ \rho$
- FST f that inserts $<_1 \& <_2$ before every α followed by $>$

 $f = \varepsilon \rightarrow (\{<_1\} \cup \{<_2\}) / (\Sigma \cup \{>\})^* __ \alpha >$

 where $\alpha >$ freely allows $>$ anywhere in α
- FST replace that replaces α with β between $<_1$ and $>$ and deletes $>$

 for replace we write a special cross product FST
Rewrite Rules to FST

FST for *replace*

Create a new FST by taking the cross product of the languages α and β (every string in α is mapped to every string in β)

Note that while matching α we need to ignore all the instances of $>$, $<$, \leq, \leq we previously inserted

Rewrite rules to FST

- FST λ_1 that only allows all $\leq_1 \beta$ preceded by λ and deletes \leq_1

$$\lambda_1 = \leq_1 \rightarrow \varepsilon / \#^{\Sigma^* \lambda} \varepsilon$$

where $#$ is a symbol marking start of the string and we ignore the \leq_2 symbols in the string

- FST λ_2 that only allows all $\leq_2 \beta$ **not** preceded by λ and deletes \leq_2

$$\lambda_2 = \leq_2 \rightarrow \varepsilon / \text{complement}(\Sigma^* \lambda) \varepsilon$$

- Final FST = $r \circ o \circ \text{replace} \circ \lambda_1 \circ \lambda_2$

- This is only for left-right iterative obligatory rewrite rules:
 similar construction for other types
Ambiguity (in parsing)

- Global ambiguity: $(de+light+ed)$ vs. $(delight+ed)$

 $foxes \rightarrow fox+N+PL \ (I \ saw \ two \ foxes)$

 $foxes \rightarrow foxes+V+3SG \ (Closeau \ foxes \ them \ again)$

- Local ambiguity:

 $asses$ has a prefix string $asses$ that has a valid analysis:

 $asses \rightarrow ass+N+PL$

- Global ambiguity results in two valid answers, but local ambiguity returns only one.
- However, local ambiguity can also slow things down since two analyses are considered partway through the string.

Summary

- FSTs can be applied to creating lexicons that are aware of morphology
- FSTs can be used for simple stemming
- FSTs can also be used for morphographemic changes in words (spelling rules), e.g. $fox+N+PL$ becomes $foxes$
- Multiple FSTs can be composed to give a single FST (that can cover all spelling rules)
- Multiple FSTs that are length preserving can also be run in parallel with the intersection of the FSTs
- Rewrite rules are a convenient notation that can be converted into FSTs automatically
- Ambiguity can exist in the lexicon: both global & local
\[[C]' \xrightarrow{^\wedge [C]'} \text{ing#} \xrightarrow{\text{ed#}} \circ \]
\[[C]' = [C]-\{n\} \]

\[\varepsilon \]

\[n \xrightarrow{g} \text{^:e} \]
\[!\{g,^\wedge\} \]
\[\text{^:n} \]

\[\varepsilon \]

\[e:_{e:ee} \xrightarrow{^\wedge :e} \text{^:e} \]

\[\text{other} = \Sigma-[C]'-\{n,e\} \]