CMPT-413
Computational Linguistics

Anoop Sarkar
http://www.cs.sfu.ca/~anoop

March 7, 2012

Outline

Algorithms for Hidden Markov Models
 Main HMM Algorithms
 HMM as Parser
 Viterbi Algorithm for HMMs
 HMM as Language Model
 HMM Learning: Fully Observed Case
 Learning from Unlabeled Data
Hidden Markov Model

Model $\theta =$ \begin{align*}
 \pi_i & \quad \text{probability of starting at state } i \\
 a_{i,j} & \quad \text{probability of transition from state } i \text{ to state } j \\
 b_i(o) & \quad \text{probability of output } o \text{ at state } i
\end{align*}

Hidden Markov Model Algorithms

- HMM as parser: compute the best sequence of states for a given observation sequence.
- HMM as language model: compute probability of given observation sequence.
- HMM as learner: given a corpus of observation sequences, learn its distribution, i.e. learn the parameters of the HMM from the corpus.
 - Learning from a set of observations with the sequence of states provided (states are not hidden) [Supervised Learning]
 - Learning from a set of observations without any state information. [Unsupervised Learning]
The task: for a given observation sequence find the most likely state sequence.
HMM as Parser

► Find most likely sequence of states for *killer clown*
► Score every possible sequence of states: AA, AN, NN, NA
 ► $P(\text{killer clown, AA}) = \pi_A \cdot b_A(\text{killer}) \cdot a_{A,A} \cdot b_A(\text{clown}) = 0.0$
 ► $P(\text{killer clown, AN}) = \pi_A \cdot b_A(\text{killer}) \cdot a_{A,N} \cdot b_N(\text{clown}) = 0.0$
 ► $P(\text{killer clown, NN}) = \pi_N \cdot b_N(\text{killer}) \cdot a_{N,N} \cdot b_N(\text{clown}) = 0.75 \cdot 0.3 \cdot 0.5 \cdot 0.4 = 0.045$
 ► $P(\text{killer clown, NA}) = \pi_N \cdot b_N(\text{killer}) \cdot a_{N,A} \cdot b_A(\text{clown}) = 0.0$
► Pick the state sequence with highest probability (NN=0.045).

HMM as Parser

► As we have seen, for input of length 2, and a HMM with 2 states there are 2^2 possible state sequences.
► In general, if we have q states and input of length T there are q^T possible state sequences.
► Using our example HMM, for input *killer crazy clown problem* we will have 2^4 possible state sequences to score.
► Our naive algorithm takes exponential time to find the best state sequence for a given input.
► The **Viterbi algorithm** uses dynamic programming to provide the best state sequence with a time complexity of $q^2 \cdot T$
Viterbi Algorithm for HMMs

- For input of length T: o_1, \ldots, o_T, we want to find the sequence of states s_1, \ldots, s_T
- Each s_t in this sequence is one of the states in the HMM.
- So the task is to find the most likely sequence of states:

$$\arg\max_{s_1, \ldots, s_T} P(o_1, \ldots, o_T, s_1, \ldots, s_T)$$

- The Viterbi algorithm solves this by creating a table $V[s, t]$ where s is one of the states, and t is an index between $1, \ldots, T$.

Consider the input *killer crazy clown problem*

So the task is to find the most likely sequence of states:

$$\arg\max_{s_1, s_2, s_3, s_4} P(\text{killer crazy clown problem}, s_1, s_2, s_3, s_4)$$

A sub-problem is to find the most likely sequence of states for *killer crazy clown*:

$$\arg\max_{s_1, s_2, s_3} P(\text{killer crazy clown}, s_1, s_2, s_3)$$

In our example there are two possible values for s_4:

$$\max_{s_1, \ldots, s_4} P(\text{killer crazy clown problem}, s_1, s_2, s_3, s_4) = \max \left\{ \max_{s_1, s_2, s_3} P(\text{killer crazy clown problem}, s_1, s_2, s_3, N), \max_{s_1, s_2, s_3} P(\text{killer crazy clown problem}, s_1, s_2, s_3, A) \right\}$$

Similarly:

$$\arg\max_{s_1, \ldots, s_3} P(\text{killer crazy clown}, s_1, s_2, s_3) = \arg\max_{N, V} \left\{ \max_{s_1, s_2} P(\text{killer crazy clown}, s_1, s_2, N), \max_{s_1, s_2} P(\text{killer crazy clown}, s_1, s_2, A) \right\}$$
Viterbi Algorithm for HMMs

- Putting them together:

\[P(\text{killer crazy clown problem}, s_1, s_2, s_3, N) = \]
\[\max \{ P(\text{killer crazy clown}, s_1, s_2, N) \cdot a_{N,N} \cdot b_N(\text{problem}), P(\text{killer crazy clown}, s_1, s_2, A) \cdot a_{A,N} \cdot b_N(\text{problem}) \} \]

\[P(\text{killer crazy clown problem}, s_1, s_2, s_3, A) = \]
\[\max \{ P(\text{killer crazy clown}, s_1, s_2, N) \cdot a_{N,A} \cdot b_A(\text{problem}), P(\text{killer crazy clown}, s_1, s_2, A) \cdot a_{A,A} \cdot b_A(\text{problem}) \} \]

- The best score is given by:

\[\max_{s_1, \ldots, s_4} P(\text{killer crazy clown problem}, s_1, s_2, s_3, s_4) = \]
\[\max_{N,A} \left\{ \max_{s_1, s_2, s_3} P(\text{killer crazy clown problem}, s_1, s_2, s_3, N), \max_{s_1, s_2, s_3} P(\text{killer crazy clown problem}, s_1, s_2, s_3, A) \right\} \]
Viterbi Algorithm for HMMs

- For input of length T: o_1, \ldots, o_T, we want to find the sequence of states s_1, \ldots, s_T
- Each s_t in this sequence is one of the states in the HMM.
- For each state q we initialize our table: $V[q, 1] = \pi_q \cdot b_q(o_1)$
- Then compute recursively for $t = 1 \ldots T - 1$ for each state q:
 \[
 V[q, t + 1] = \max_{q'} \{ V[q', t] \cdot a_{q', q} \cdot b_q(o_{t+1}) \}
 \]
- After the loop terminates, the best score is $\max_q V[q, T]$

Outline

Algorithms for Hidden Markov Models
- Main HMM Algorithms
- HMM as Parser
- Viterbi Algorithm for HMMs
- HMM as Language Model
- HMM Learning: Fully Observed Case
- Learning from Unlabeled Data
HMM as Language Model

- Find \(P(\text{killer clown}) = \sum_y P(y, \text{killer clown}) \)
- \(P(\text{killer clown}) = P(\text{AA, killer clown}) + P(\text{AN, killer clown}) + P(\text{NN, killer clown}) + P(\text{NA, killer clown}) \)

HMM as Language Model

- Consider the input \textit{killer crazy clown problem}
- So the task is to find the sum over all sequences of states:
 \[
 \sum_{s_1, s_2, s_3, s_4} P(\text{killer crazy clown problem, } s_1, s_2, s_3, s_4)
 \]
- A sub-problem is to find the most likely sequence of states for \textit{killer crazy clown}:
 \[
 \sum_{s_1, s_2, s_3} P(\text{killer crazy clown, } s_1, s_2, s_3)
 \]
In our example there are two possible values for s_4:

$$
\sum_{s_1, \ldots, s_4} P(\text{killer crazy clown problem}, s_1, s_2, s_3, s_4) = \\
\sum_{s_1, s_2, s_3} P(\text{killer crazy clown problem}, s_1, s_2, s_3, N) + \\
\sum_{s_1, s_2, s_3} P(\text{killer crazy clown problem}, s_1, s_2, s_3, A)
$$

Very similar to the Viterbi algorithm. Sum instead of max, and that’s the only difference!

Provide an index for each input symbol:

1:killer 2:crazy 3:clown 4:problem

$$
V[N, 3] = \sum_{s_1, s_2} P(\text{killer crazy clown}, s_1, s_2, N)
$$

$$
V[N, 4] = \sum_{s_1, s_2, s_3} P(\text{killer crazy clown problem}, s_1, s_2, s_3, N)
$$

Putting them together:

$$
V[N, 4] = V[N, 3] \cdot a_{N,N} \cdot b_{N}(\text{problem}) + \\
V[A, 3] \cdot a_{A,N} \cdot b_{N}(\text{problem})
$$

$$
V[A, 4] = V[N, 3] \cdot a_{N,A} \cdot b_{A}(\text{problem}) + \\
V[A, 3] \cdot a_{A,A} \cdot b_{A}(\text{problem})
$$

The best score for the input is given by: $V[N, 4] + V[A, 4]$
HMM as Language Model

- For input of length T: o_1, \ldots, o_T, we want to find $P(o_1, \ldots, o_T) = \sum_{y_1, \ldots, y_T} P(y_1, \ldots, y_T, o_1, \ldots, o_T)$
- Each y_t in this sequence is one of the states in the HMM.
- For each state q we initialize our table: $V[q, 1] = \pi_q \cdot b_q(o_1)$
- Then compute recursively for $t = 1 \ldots T - 1$ for each state q:

$$V[q, t + 1] = \sum_{q'} \{ V[q', t] \cdot a_{q', q} \cdot b_q(o_{t+1}) \}$$

- After the loop terminates, the best score is $\sum_q V[q, T]$
- So: Viterbi with sum instead of max gives us an algorithm for HMM as a language model.
- This algorithm is sometimes called the forward algorithm.

Outline

Algorithms for Hidden Markov Models
- Main HMM Algorithms
- HMM as Parser
- Viterbi Algorithm for HMMs
- HMM as Language Model
- HMM Learning: Fully Observed Case
- Learning from Unlabeled Data
HMM Learning from Labeled Data

Model $\theta = \left\{ \begin{array}{l}
\pi_i \quad \text{probability of starting at state } i \\
a_{i,j} \quad \text{probability of transition from state } i \text{ to state } j \\
b_i(o) \quad \text{probability of output } o \text{ at state } i
\end{array} \right.$

- The task: to find the values for the parameters of the HMM:
 - π_A, π_N
 - $a_{A,A}, a_{A,N}, a_{N,N}, a_{N,A}$
 - $b_A(killer), b_A(crazy), b_A(clown), b_A(problem)$
 - $b_N(killer), b_N(crazy), b_N(clown), b_N(problem)$
Learning from Fully Observed Data

- Labeled Data L:

 x_1,y_1: killer/N clown/N \hspace{0.5cm} (x_1 = \text{killer,clown}; \ y_1 = N,N)

 x_2,y_2: killer/N problem/N \hspace{0.5cm} (x_2 = \text{killer,problem}; \ y_2 = N,N)

 x_3,y_3: crazy/A problem/N \hspace{0.5cm} ...

 x_4,y_4: crazy/A clown/N

 x_5,y_5: problem/N crazy/A clown/N

 x_6,y_6: clown/N crazy/A killer/N

Learning from Fully Observed Data

- Let’s say we have m labeled examples:

 $L = (x_1, y_1), \ldots, (x_m, y_m)$

- Each $(x_{\ell}, y_{\ell}) = \{o_1, \ldots, o_T, s_1, \ldots, s_T\}$

- For each (x_{ℓ}, y_{ℓ}) we can compute the probability using the HMM:

 - $(x_1 = \text{killer, clown}; y_1 = N, N)$:

 \[
 P(x_1, y_1) = \pi_N \cdot b_N(\text{killer}) \cdot a_{N,N} \cdot b_N(\text{clown})
 \]

 - $(x_2 = \text{killer, problem}; y_2 = N, N)$:

 \[
 P(x_2, y_2) = \pi_N \cdot b_N(\text{killer}) \cdot a_{N,N} \cdot b_N(\text{problem})
 \]

 - $(x_3 = \text{crazy, problem}; y_3 = A, N)$:

 \[
 P(x_3, y_3) = \pi_A \cdot b_A(\text{crazy}) \cdot a_{A,N} \cdot b_N(\text{problem})
 \]

 - $(x_4 = \text{crazy, clown}; y_4 = A, N)$:

 \[
 P(x_4, y_4) = \pi_A \cdot b_A(\text{crazy}) \cdot a_{A,N} \cdot b_N(\text{clown})
 \]

 - $(x_5 = \text{problem, crazy, clown}; y_5 = N, A, N)$:

 \[
 P(x_5, y_5) = \pi_N \cdot b_N(\text{problem}) \cdot a_{N,A} \cdot b_A(\text{crazy}) \cdot a_{A,N} \cdot b_N(\text{clown})
 \]

 - $(x_6 = \text{clown, crazy, killer}; y_6 = A, A, N)$:

 \[
 P(x_6, y_6) = \pi_N \cdot b_N(\text{clown}) \cdot a_{N,A} \cdot b_A(\text{crazy}) \cdot a_{A,N} \cdot b_N(\text{killer})
 \]

- $\prod_{\ell} P(x_{\ell}, y_{\ell}) = \pi_N^4 \cdot \pi_A^2 \cdot a_{N,N}^2 \cdot a_{N,A}^2 \cdot a_{A,N}^4 \cdot a_{A,A}^0 \cdot b_N(\text{killer})^3 \cdot b_N(\text{clown})^4 \cdot b_N(\text{problem})^3 \cdot b_A(\text{crazy})^4$
Learning from Fully Observed Data

- We can easily collect frequency of observing a word with a state (tag)
 - $f(i, x, y) =$ number of times i is the initial state in (x, y)
 - $f(i, j, x, y) =$ number of times j follows i in (x, y)
 - $f(i, o, x, y) =$ number of times i is paired with observation o

- Then according to our HMM the probability of x, y is:

$$P(x, y) = \prod_i \pi_i^{f(i, x, y)} \cdot \prod_{i,j} a_{i,j}^{f(i, j, x, y)} \cdot \prod_{i,o} b_i(o)^{f(i, o, x, y)}$$

Learning from Fully Observed Data

- According to our HMM the probability of x, y is:

$$P(x, y) = \prod_i \pi_i^{f(i, x, y)} \cdot \prod_{i,j} a_{i,j}^{f(i, j, x, y)} \cdot \prod_{i,o} b_i(o)^{f(i, o, x, y)}$$

- For the labeled data $L = (x_1, y_1), \ldots, (x_\ell, y_\ell), \ldots, (x_m, y_m)$

$$P(L) = \prod_{\ell=1}^m P(x_\ell, y_\ell)$$

$$= \prod_{\ell=1}^m \left(\prod_i \pi_i^{f(i, x_\ell, y_\ell)} \cdot \prod_{i,j} a_{i,j}^{f(i, j, x_\ell, y_\ell)} \cdot \prod_{i,o} b_i(o)^{f(i, o, x_\ell, y_\ell)} \right)$$
Learning from Fully Observed Data

According to our HMM the probability of x, y is:

$$P(L) = \prod_{\ell=1}^{m} \left(\prod_{i} \pi_{i}^{f(i, x_{\ell}, y_{\ell})} \cdot \prod_{i,j} a_{i,j}^{f(i, j, x_{\ell}, y_{\ell})} \cdot \prod_{i,o} b_{i}(o)^{f(i, o, x_{\ell}, y_{\ell})} \right)$$

The log probability of the labeled data $(x_{1}, y_{1}), \ldots, (x_{m}, y_{m})$ according to HMM with parameters θ is:

$$L(\theta) = \sum_{\ell=1}^{m} \log P(x_{\ell}, y_{\ell})$$

$$= \sum_{\ell=1}^{m} \sum_{i} f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \sum_{i,j} f(i, j, x_{\ell}, y_{\ell}) \log a_{i,j} + \sum_{i,o} f(i, o, x_{\ell}, y_{\ell}) \log b_{i}(o)$$

Learning from Fully Observed Data

$$L(\theta) = \sum_{\ell=1}^{m} \sum_{i} f(i, x_{\ell}, y_{\ell}) \log \pi_{i} + \sum_{i,j} f(i, j, x_{\ell}, y_{\ell}) \log a_{i,j} + \sum_{i,o} f(i, o, x_{\ell}, y_{\ell}) \log b_{i}(o)$$

$L(\theta)$ is the probability of the labeled data $(x_{1}, y_{1}), \ldots, (x_{m}, y_{m})$

We want to find a θ that will give us the maximum value of $L(\theta)$

We find the θ such that $\frac{dL(\theta)}{d\theta} = 0$
Learning from Fully Observed Data

\[L(\theta) = \sum_{\ell=1}^{m} \left(\sum_{i} f(i, x_\ell, y_\ell) \log \pi_i + \sum_{i,j} f(i, j, x_\ell, y_\ell) \log a_{i,j} + \sum_{i,o} f(i, o, x_\ell, y_\ell) \log b_{i}(o) \right) \]

- The values of \(\pi_i, a_{i,j}, b_{i}(o) \) that maximize \(L(\theta) \) are:

\[
\pi_i = \frac{\sum_\ell f(i, x_\ell, y_\ell)}{\sum_\ell \sum_k f(k, x_\ell, y_\ell)}
\]

\[
a_{i,j} = \frac{\sum_\ell f(i, j, x_\ell, y_\ell)}{\sum_\ell \sum_k f(i, k, x_\ell, y_\ell)}
\]

\[
b_{i}(o) = \frac{\sum_\ell f(i, o, x_\ell, y_\ell)}{\sum_\ell \sum_{o' \in V} f(i, o', x_\ell, y_\ell)}
\]

Labeled Data:
- \(x_1,y_1: \) killer/N clown/N
- \(x_2,y_2: \) killer/N problem/N
- \(x_3,y_3: \) crazy/A problem/N
- \(x_4,y_4: \) crazy/A clown/N
- \(x_5,y_5: \) problem/N crazy/A clown/N
- \(x_6,y_6: \) clown/N crazy/A killer/N
Learning from Fully Observed Data

- The values of π_i that maximize $L(\theta)$ are:

$$\pi_i = \frac{\sum_{\ell} f(i, x_\ell, y_\ell)}{\sum_{\ell} \sum_k f(k, x_\ell, y_\ell)}$$

- $\pi_N = \frac{2}{3}$ and $\pi_A = \frac{1}{3}$ because:

$$\sum_{\ell} f(N, x_\ell, y_\ell) = 4$$
$$\sum_{\ell} f(A, x_\ell, y_\ell) = 2$$

Learning from Fully Observed Data

- The values of $a_{i,j}$ that maximize $L(\theta)$ are:

$$a_{i,j} = \frac{\sum_{\ell} f(i, j, x_\ell, y_\ell)}{\sum_{\ell} \sum_k f(i, k, x_\ell, y_\ell)}$$

- $a_{N,N} = \frac{1}{2}$; $a_{N,A} = \frac{1}{2}$; $a_{A,N} = 1$ and $a_{A,A} = 0$ because:

$$\sum_{\ell} f(N, N, x_\ell, y_\ell) = 2$$
$$\sum_{\ell} f(A, N, x_\ell, y_\ell) = 4$$
$$\sum_{\ell} f(N, A, x_\ell, y_\ell) = 2$$
$$\sum_{\ell} f(A, A, x_\ell, y_\ell) = 0$$
Learning from Fully Observed Data

- The values of $b_i(o)$ that maximize $L(\theta)$ are:

$$b_i(o) = \frac{\sum_{\ell} f(i, o, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{o' \in V} f(i, o', x_{\ell}, y_{\ell})}$$

- $b_N(killer) = \frac{3}{10}$; $b_N(clown) = \frac{4}{10}$; $b_N(problem) = \frac{3}{10}$ and $b_A(crazy) = 1$ because:

$$\sum_{\ell} f(N, killer, x_{\ell}, y_{\ell}) = 3 \quad \sum_{\ell} f(A, killer, x_{\ell}, y_{\ell}) = 0$$
$$\sum_{\ell} f(N, clown, x_{\ell}, y_{\ell}) = 4 \quad \sum_{\ell} f(A, clown, x_{\ell}, y_{\ell}) = 0$$
$$\sum_{\ell} f(N, crazy, x_{\ell}, y_{\ell}) = 0 \quad \sum_{\ell} f(A, crazy, x_{\ell}, y_{\ell}) = 4$$
$$\sum_{\ell} f(N, problem, x_{\ell}, y_{\ell}) = 3 \quad \sum_{\ell} f(A, problem, x_{\ell}, y_{\ell}) = 0$$

Learning from Fully Observed Data

- x_1, y_1: killer/N clown/N
- x_2, y_2: killer/N problem/N
- x_3, y_3: crazy/A problem/N
- x_4, y_4: crazy/A clown/N
- x_5, y_5: problem/N crazy/A clown/N
- x_6, y_6: clown/N crazy/A killer/N

$$\pi = \begin{bmatrix} A & N \\ 0.25 & 0.75 \end{bmatrix} \quad a = \begin{bmatrix} a_{i,j} & A & N \\ N & 0.5 & 0.5 \\ A & 0.0 & 1.0 \end{bmatrix} \quad b = \begin{bmatrix} b_i(o) & A & N \\ clown & 0.0 & 0.4 \\ killer & 0.0 & 0.3 \\ problem & 0.0 & 0.3 \\ crazy & 1.0 & 0.0 \end{bmatrix}$$
Outline

Algorithms for Hidden Markov Models
- Main HMM Algorithms
- HMM as Parser
- Viterbi Algorithm for HMMs
- HMM as Language Model
- HMM Learning: Fully Observed Case
- Learning from Unlabeled Data

Learning from Unlabeled Data

- Unlabeled Data $U = x_1, \ldots, x_m$:
 - x_1: killer clown
 - x_2: killer problem
 - x_3: crazy problem
 - x_4: crazy clown
- y_1, y_2, y_3, y_4 are unknown.
- But we can enumerate all possible values for y_1, y_2, y_3, y_4
- For example, for x_1: killer clown
 - $x_1, y_1, 1$: killer/A clown/A $p_1 = \pi_A \cdot b_A(\text{killer}) \cdot a_{A,A} \cdot b_A(\text{clown})$
 - $x_1, y_1, 2$: killer/A clown/N $p_2 = \pi_A \cdot b_A(\text{killer}) \cdot a_{A,N} \cdot b_N(\text{clown})$
 - $x_1, y_1, 3$: killer/N clown/N $p_3 = \pi_N \cdot b_N(\text{killer}) \cdot a_{N,N} \cdot b_N(\text{clown})$
 - $x_1, y_1, 4$: killer/N clown/A $p_4 = \pi_N \cdot b_N(\text{killer}) \cdot a_{N,A} \cdot b_A(\text{clown})$
Learning from Unlabeled Data

- Assume some values for $\theta = \pi, a, b$
- We can compute $P(y | x_\ell, \theta)$ for any y for a given x_ℓ

\[
P(y | x_\ell, \theta) = \frac{P(x, y | \theta)}{\sum_{y'} P(x, y' | \theta)}
\]

- For example, we can compute $P(\text{NN} | \text{killer clown}, \theta)$ as follows:

\[
\frac{\pi_N \cdot b_N(\text{killer}) \cdot a_{N,N} \cdot b_N(\text{clown})}{\sum_{i,j} \pi_i \cdot b_i(\text{killer}) \cdot a_{i,j} \cdot b_j(\text{clown})}
\]

- $P(y | x_\ell, \theta)$ is called the posterior probability

Learning from Unlabeled Data

- Compute the posterior for all possible outputs for each example in training:
 - For x_1: killer clown
 - $x_1,y_1,1$: killer/A clown/A $P(\text{AA} | \text{killer clown}, \theta)$
 - $x_1,y_1,2$: killer/A clown/N $P(\text{AN} | \text{killer clown}, \theta)$
 - $x_1,y_1,3$: killer/N clown/N $P(\text{NN} | \text{killer clown}, \theta)$
 - $x_1,y_1,4$: killer/N clown/A $P(\text{NA} | \text{killer clown}, \theta)$
 - For x_2: killer problem
 - $x_2,y_2,1$: killer/A problem/A $P(\text{AA} | \text{killer problem}, \theta)$
 - $x_2,y_2,2$: killer/A problem/N $P(\text{AN} | \text{killer problem}, \theta)$
 - $x_2,y_2,3$: killer/N problem/N $P(\text{NN} | \text{killer problem}, \theta)$
 - $x_2,y_2,4$: killer/N problem/A $P(\text{NA} | \text{killer problem}, \theta)$
 - Similarly for x_3: crazy problem
 - And x_4: crazy clown
Learning from Unlabeled Data

- For unlabeled data, the log probability of the data given θ is:

$$
L(\theta) = \sum_{\ell=1}^{m} \log \sum_{y} P(x_{\ell}, y \mid \theta)
$$

$$
= \sum_{\ell=1}^{m} \log \sum_{y} P(y \mid x_{\ell}, \theta) \cdot P(x_{\ell} \mid \theta)
$$

- Unlike the fully observed case there is no simple solution to finding θ to maximize $L(\theta)$

- We instead initialize θ to some values, and then iteratively find better values of θ: $\theta^0, \theta^1, \ldots$ using the following formula:

$$
\theta^t = \arg \max_{\theta} Q(\theta, \theta^{t-1})
$$

$$
= \sum_{\ell=1}^{m} \sum_{y} P(y \mid x_{\ell}, \theta^{t-1}) \cdot \log P(x_{\ell}, y \mid \theta)
$$

Learning from Unlabeled Data

$$
\theta^t = \arg \max_{\theta} Q(\theta, \theta^{t-1})
$$

$$
Q(\theta, \theta^{t-1}) = \sum_{\ell=1}^{m} \sum_{y} P(y \mid x_{\ell}, \theta^{t-1}) \cdot \log P(x_{\ell}, y \mid \theta)
$$

$$
= \sum_{\ell=1}^{m} \sum_{y} P(y \mid x_{\ell}, \theta^{t-1}) \cdot \left(\sum_{i} f(i, x_{\ell}, y) \cdot \log \pi_i
+ \sum_{i,j} f(i, j, x_{\ell}, y) \cdot \log a_{i,j}
+ \sum_{i,o} f(i, o, x_{\ell}, y) \cdot \log b_{i}(o) \right)
$$
Learning from Unlabeled Data

\[g(i, x_\ell) = \sum_y P(y \mid x_\ell, \theta^{t-1}) \cdot f(i, x_\ell, y) \]

\[g(i, j, x_\ell) = \sum_y P(y \mid x_\ell, \theta^{t-1}) \cdot f(i, j, x_\ell, y) \]

\[g(i, o, x_\ell) = \sum_y P(y \mid x_\ell, \theta^{t-1}) \cdot f(i, o, x_\ell, y) \]

\[\theta^t = \arg\max_{\pi, a, b} \sum_{\ell=1}^{m} \sum_i g(i, x_\ell) \cdot \log \pi_i \]

\[+ \sum_{i,j} g(i, j, x_\ell) \cdot \log a_{i,j} \]

\[+ \sum_{i,o} g(i, o, x_\ell) \cdot \log b_j(o) \]

Learning from Unlabeled Data

\[Q(\theta, \theta^{t-1}) = \sum_{\ell=1}^{m} \]

\[\sum_i g(i, x_\ell) \log \pi_i + \sum_{i,j} g(i, j, x_\ell) \log a_{i,j} + \sum_{i,o} g(i, o, x_\ell) \log b_j(o) \]

- The values of \(\pi_i, a_{i,j}, b_j(o) \) that maximize \(L(\theta) \) are:

\[\pi_i = \frac{\sum_{\ell} g(i, x_\ell)}{\sum_{\ell} \sum_k g(k, x_\ell)} \]

\[a_{i,j} = \frac{\sum_{\ell} g(i, j, x_\ell)}{\sum_{\ell} \sum_k g(i, k, x_\ell)} \]

\[b_j(o) = \frac{\sum_{\ell} g(i, o, x_\ell)}{\sum_{\ell} \sum_{o' \in V} g(i, o', x_\ell)} \]
EM Algorithm for Learning HMMs

- Initialize θ^0 at random. Let $t = 0$.
- The EM Algorithm:
 - E-step: compute expected values of y, $P(y \mid x, \theta)$ and calculate $g(i, x), g(i, j, x), g(i, o, x)$
 - M-step: compute $\theta^t = \arg\max_{\theta} Q(\theta, \theta^{t-1})$
 - Stop if $L(\theta^t)$ did not change much since last iteration. Else continue.
- The above algorithm is guaranteed to improve likelihood of the unlabeled data.
- In other words, $L(\theta^t) \geq L(\theta^{t-1})$
- *But* it all depends on θ^0!