Context-free Grammars

- Set of rules by which valid sentences can be constructed.
- Example:
 Sentence \rightarrow Noun Verb Object
 Noun \rightarrow trees | parsers
 Verb \rightarrow are | grow
 Object \rightarrow on Noun | Adjective
 Adjective \rightarrow slowly | interesting

- What strings can Sentence derive?
- Syntax only – no semantic checking
Derivations of a CFG

- *parsers grow on trees*
- *parsers grow on Noun*
- *parsers grow Object*
- *parsers Verb Object*
- *Noun Verb Object*
- *Sentence*

Derivations and parse trees

```
          Sentence
         /    \
        Noun   Verb
     /      /   \   \   
parsers grow on trees
```
Ambiguity

• An input is ambiguous with respect to a CFG if it can be derived with two different parse trees
• A parser needs a mechanical definition of ambiguity as it parses the input string
• Is a parser choice really ambiguous, i.e. does it lead to ambiguous parse trees? or not?
• We can formally define ambiguity in terms of the derivations possible in a CFG

Arithmetic Expressions

• E \rightarrow E + E
• E \rightarrow E * E
• E \rightarrow (E)
• E \rightarrow - E
• E \rightarrow id
Leftmost derivations for $id + id * id$

- $E \rightarrow E + E
 \quad \Rightarrow E \Rightarrow E + E$
- $E \rightarrow E * E
 \quad \Rightarrow id + E * E$
- $E \rightarrow (E)
 \quad \Rightarrow id + E * E$
- $E \rightarrow -E
 \quad \Rightarrow id + id * id$
- $E \rightarrow id
 \quad \Rightarrow id + id * id$

Leftmost derivations for $id + id * id$

- $E \rightarrow E + E
 \quad \Rightarrow E \Rightarrow E * E$
- $E \rightarrow E * E
 \quad \Rightarrow E + E * E$
- $E \rightarrow (E)
 \quad \Rightarrow id + E * E$
- $E \rightarrow -E
 \quad \Rightarrow id + id * E$
- $E \rightarrow id
 \quad \Rightarrow id + id * id$
Rightmost derivation for \(\text{id} + \text{id} \ast \text{id} \)

\[
\begin{align*}
E & \rightarrow E + E \\
E & \rightarrow E \ast E \\
E & \rightarrow (E) \\
E & \rightarrow - E \\
E & \rightarrow \text{id}
\end{align*}
\]

\[
E \Rightarrow E + E \\
E \Rightarrow E + E \ast E \\
E \Rightarrow E + E \ast \text{id} \\
E \Rightarrow E + \text{id} \ast \text{id} \\
E \Rightarrow \text{id} + \text{id} \ast \text{id}
\]

Rightmost derivation for \(\text{id} + \text{id} \ast \text{id} \)

\[
\begin{align*}
E & \rightarrow E + E \\
E & \rightarrow E \ast E \\
E & \rightarrow (E) \\
E & \rightarrow - E \\
E & \rightarrow \text{id}
\end{align*}
\]

\[
E \Rightarrow E \ast E \\
E \Rightarrow E \ast \text{id} \\
E \Rightarrow E + E \ast \text{id} \\
E \Rightarrow E + \text{id} \ast \text{id} \\
E \Rightarrow \text{id} + \text{id} \ast \text{id}
\]
Ambiguity

- We can now define *ambiguity* for a context-free parser
- If a parser has a choice of two different leftmost derivations,
- or if a parser has a choice of two different rightmost derivations,
- for a particular input then that input is ambiguous

Parsing - Roadmap

- Parser is a decision procedure: builds a parse tree
- Top-down vs. bottom-up
- Recursive-descent with backtracking
- Bottom-up parsing (CKY)
- Shift-reduce parsing
- Combining top-down and bottom-up: Earley parsing
Top-Down vs. Bottom Up

Grammar:
\[S \rightarrow A \ B \]
\[A \rightarrow c \ | \ \varepsilon \]
\[B \rightarrow cbB \ | \ ca \]

Input String: ccbca

<table>
<thead>
<tr>
<th>Top-Down/leftmost</th>
<th>Bottom-Up/rightmost</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S \Rightarrow AB)</td>
<td>(S \Rightarrow AB)</td>
</tr>
<tr>
<td>(\Rightarrow cB)</td>
<td>(A \Rightarrow c)</td>
</tr>
<tr>
<td>(\Rightarrow ccbB)</td>
<td>(B \Rightarrow cbB)</td>
</tr>
<tr>
<td>(\Rightarrow ccbca)</td>
<td>(B \Rightarrow ca)</td>
</tr>
</tbody>
</table>

Ambiguity

- Grammar is ambiguous if more than one parse tree is possible for some sentences
- Examples in English:
 - Two sisters reunited after 18 years in checkout counter
- It is undecidable to check using an algorithm whether a grammar is ambiguous
Parsing CFGs

• Consider the problem of parsing with arbitrary CFGs
• For any input string, the parser has to produce a parse tree
• The simpler problem: print yes if the input string is generated by the grammar, print no otherwise
• This problem is called recognition

CKY Recognition Algorithm

• The Cocke-Kasami-Younger algorithm
• As we shall see it runs in time that is polynomial in the size of the input
• It takes space polynomial in the size of the input
• Remarkable fact: it can find all possible parse trees (exponentially many) in polynomial time
Chomsky Normal Form

• Before we can see how CKY works, we need to convert the input CFG into Chomsky Normal Form
• CNF is one of many grammar transformations that preserve the language
• CNF means that the input CFG G is converted to a new CFG G' in which all rules are of the form:
 $A \rightarrow B \ C$
 $A \rightarrow \ a$

Epsilon Removal

• First step, remove epsilon rules
 $A \rightarrow B \ C$
 $C \rightarrow \varepsilon \mid C \ D \mid a$
 $D \rightarrow b \quad B \rightarrow b$
• After ε-removal:
 $A \rightarrow B \mid B \ C \ D \mid B \ a \mid BC$
 $C \rightarrow D \mid C \ D \mid a \ D \mid C \ D \mid a$
 $D \rightarrow b \quad B \rightarrow b$
Removal of Chain Rules

- Second step, remove chain rules
 \[A \rightarrow B C \mid C D C \]
 \[C \rightarrow D \mid a \]
 \[D \rightarrow d \quad B \rightarrow b \]
- After removal of chain rules:
 \[A \rightarrow B a \mid B D \mid a D a \mid a D D \mid D a \mid D D D \]
 \[D \rightarrow d \quad B \rightarrow b \]

Eliminate terminals from RHS

- Third step, remove terminals from the rhs of rules
 \[A \rightarrow B a C d \]
- After removal of terminals from the rhs:
 \[A \rightarrow B N_1 C N_2 \]
 \[N_1 \rightarrow a \]
 \[N_2 \rightarrow d \]
Binarize RHS with Nonterminals

- Fourth step, convert the rhs of each rule to have two non-terminals
 \[A \rightarrow B N_1 C N_2\]
 \[N_1 \rightarrow a\]
 \[N_2 \rightarrow d\]
- After converting to binary form:
 \[A \rightarrow B N_3 N_1\]
 \[N_1 \rightarrow a\]
 \[N_3 \rightarrow N_1 N_4\]
 \[N_2 \rightarrow d\]
 \[N_4 \rightarrow C N_2\]

CKY algorithm

- We will consider the working of the algorithm on an example CFG and input string
- Example CFG:
 \[S \rightarrow A X \mid Y B\]
 \[X \rightarrow A B \mid B A\]
 \[Y \rightarrow B A\]
 \[A \rightarrow a\]
 \[B \rightarrow a\]
- Example input string: \textit{aaa}
CKY Algorithm

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>X, Y</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>A → a</td>
<td>X → A B</td>
<td>S → A_{0,1}</td>
<td>X_{1,3}</td>
<td></td>
</tr>
<tr>
<td>B → a</td>
<td>B A</td>
<td>S → Y_{0,2}</td>
<td>B_{2,3}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>A, B</td>
<td>X, Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>A → a</td>
<td>X → A B</td>
<td>B A</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B → a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a a a a

Parse trees

S
 /|
 / |
 / |
 S Y B

S
 /|
 / |
 / |
 S Y B

S
 /|
 / |
 / |
 S Y B

S
 /|
 / |
 / |
 S Y B
CKY Algorithm

Input string input of size n
Create a 2D table chart of size \(n^2 \)
for i=0 to n-1
 chart[i][i+1] = A if there is a rule A → a and input[i]=a
for j=2 to N
 for i=j-2 downto 0
 for k=i+1 to j-1
 chart[i][j] = A if there is a rule A → B C and chart[i][k] = B and chart[k][j] = C
 return yes if chart[0][n] has the start symbol
else return no

CKY algorithm summary

- Parsing arbitrary CFGs
- For the CKY algorithm, the time complexity is \(O(|G|^2 n^3) \)
- The space requirement is \(O(n^2) \)
- The CKY algorithm handles arbitrary ambiguous CFGs
- All ambiguous choices are stored in the chart
- For compilers we consider parsing algorithms for CFGs that do not handle ambiguous grammars
Parsing - Summary

• Parsing arbitrary CFGs: \(O(n^3) \) time complexity
• Top-down vs. bottom-up
 – Recursive-descent parsing
 – Shift-reduce parsing
• Earley parsing
• Ambiguous grammars result in parser output with multiple parse trees for a single input string

Parsing - Additional Results

• \(O(n^2) \) time complexity for linear grammars
 – All rules are of the form \(S \rightarrow aSb \) or \(S \rightarrow a \)
 – Reason for \(O(n^2) \) bound is the linear grammar normal form: \(A \rightarrow aB, A \rightarrow Ba, A \rightarrow B, A \rightarrow a \)
• Left corner parsers
 – extension of top-down parsing to arbitrary CFGs
• Earley’s parsing algorithm
 – \(O(n^3) \) worst case time for arbitrary CFGs just like CKY
 – \(O(n^3) \) worst case time for unambiguous CFGs
 – \(O(n) \) for specific unambiguous grammars
 (e.g. \(S \rightarrow aSa \mid bSb \mid \varepsilon \))
Non-CF Languages

\[L_1 = \{wcw \mid w \in (a|b)^*\} \]
\[L_2 = \{a^n b^m c^n d^m \mid n \geq 1, m \geq 1\} \]
\[L_3 = \{a^n b^n c^n \mid n \geq 0\} \]

CF Languages

\[L_4 = \{wcw^R \mid w \in (a|b)^*\} \]
\[S \rightarrow aSa \mid bSb \mid c \]
\[L_5 = \{a^n b^m c^n d^m \mid n \geq 1, m \geq 1\} \]
\[S \rightarrow aSd \mid aAd \]
\[A \rightarrow bAc \mid bc \]
Context-free languages and Pushdown Automata

- Recall that for each regular language there was an equivalent finite-state automaton
- The FSA was used as a recognizer of the regular language
- For each context-free language there is also an automaton that recognizes it: called a pushdown automaton (pda)

Pushdown Automata

- PDA has
 - an alphabet (terminals) and
 - stack symbols (like non-terminals),
 - a finite-state automaton, and
 - stack

E.g. PDA for language $L = \{ 0^n1^n : n \geq 0 \}$

\[\epsilon, \epsilon \rightarrow \$, \quad 0, \epsilon \rightarrow A \]

\[1, A \rightarrow \epsilon \]

\[\epsilon, \$ \rightarrow \epsilon \]

\[1, A \rightarrow \epsilon \]

\[\text{push stack symbol } A \]

\[\text{check that stack is empty} \]

\[\text{pop stack symbol } A \]
Shift-reduce parser as a pda

Non-deterministic PDA that is a parser for grammar: $S := 0S1 | 2$
$L(S) = \{ 0^n 2 1^n : n \geq 0 \}$

- $\varepsilon, \varepsilon \rightarrow S$
- $2, \varepsilon \rightarrow S$
- $\varepsilon, 0S1 \rightarrow S$
- $\varepsilon, S \$ \rightarrow \varepsilon$
- $1, \varepsilon \rightarrow 1$
- $0, \varepsilon \rightarrow 0$

Check that stack is empty

Reduction action \rightarrow implies a push/pop of stack symbol(s)

after reduce and shift 1

Context-free languages and Pushdown Automata

- Similar to FSAs there are non-deterministic pda and deterministic pda
- Unlike in the case of FSAs we cannot always convert a npda to a dpda
- The construction of a pda will provide us with the algorithm for parsing (take in strings and provide the parse tree)
CKY algorithm for PCFGs

• We will consider the working of the algorithm on an example PCFG and input string

• Example PCFG:
 \[S \rightarrow A \, X \, (0.3) \, | \, Y \, B \, (0.7) \]
 \[X \rightarrow A \, B \, (0.1) \, | \, B \, A \, (0.9) \]
 \[Y \rightarrow B \, A \, (1.0) \]
 \[A \rightarrow a \, (1.0) \]
 \[B \rightarrow a \, (1.0) \]

• Example input string: \textit{aaa}
Parse trees

PCFG is consistent:
\[0.7 + 0.27 + 0.03 = 1.0\]