Probabilistic CFG (PCFG)

\[
\begin{align*}
S & \rightarrow \ NP \ VP \quad 1 \\
VP & \rightarrow \ V \ NP \quad 0.9 \\
VP & \rightarrow \ VP \ PP \quad 0.1 \\
PP & \rightarrow \ P \ NP \quad 1 \\
NP & \rightarrow \ NP \ PP \quad 0.25 \\
NP & \rightarrow \ Calvin \quad 0.25 \\
NP & \rightarrow \ monsters \quad 0.25 \\
NP & \rightarrow \ school \quad 0.25 \\
V & \rightarrow \ imagined \quad 1 \\
P & \rightarrow \ in \quad 1
\end{align*}
\]

\[
P(input) = \sum_{\text{tree}} P(\text{tree} \mid \text{input})
\]

\[
P(\text{Calvin imagined monsters in school}) = ?
\]

Notice that \(P(VP \rightarrow V \ NP) + P(VP \rightarrow VP \ PP) = 1.0\)
Probabilistic CFG (PCFG)

\[P(\text{Calvin imagined monsters in school}) = \]?

\[(S \ (NP \ Calvin) \newline (VP \ (V \ imagined) \newline \ (NP \ (NP \ monsters) \newline \ (PP \ (P \ in) \newline \ (NP \ school)))))) \]

\[(S \ (NP \ Calvin) \newline (VP \ (VP \ (V \ imagined) \newline \ (NP \ monsters)) \newline \ (PP \ (P \ in) \newline \ (NP \ school))))]] \]

\[P(\text{tree}_1) = P(S \rightarrow NP \ VP) \times P(NP \rightarrow Calvin) \times P(\text{VP} \rightarrow V \ NP) \times \] \[P(V \rightarrow \text{imagined}) \times P(NP \rightarrow NP \ PP) \times P(NP \rightarrow \text{monsters}) \times \] \[P(PP \rightarrow P \ NP) \times P(P \rightarrow \text{in}) \times P(NP \rightarrow \text{school}) \] \[= 1 \times 0.25 \times 0.9 \times 1 \times 0.25 \times 0.25 \times 1 \times 1 \times 0.25 = .003515625 \]
Probabilistic CFG (PCFG)

(S (NP Calvin)
 (VP (VP (V imagined)
 (NP monsters))
 (PP (P in)
 (NP school))))

\[P(tree_2) = P(S \rightarrow NP VP) \times P(NP \rightarrow Calvin) \times P(VP \rightarrow VP PP) \times \]
\[P(VP \rightarrow V NP) \times P(V \rightarrow imagined) \times P(NP \rightarrow monsters) \times \]
\[P(PP \rightarrow P NP) \times P(P \rightarrow in) \times P(NP \rightarrow school) \]
\[= 1 \times 0.25 \times 0.1 \times 0.9 \times 1 \times 0.25 \times 1 \times 1 \times 0.25 = 0.00140625 \]

Probabilistic CFG (PCFG)

\[P(Calvin \, imagined \, monsters \, in \, school) = P(tree_1) + P(tree_2) \]
\[= .003515625 + .00140625 \]
\[= .004921875 \]

Most likely tree is \(tree_1 = \arg \max_{tree} P(tree | input) \)

(S (NP Calvin)
 (VP (V imagined)
 (NP (NP monsters)
 (PP (P in)
 (NP school)))))

(S (NP Calvin)
 (VP (VP (V imagined)
 (NP monsters))
 (PP (P in)
 (NP school))))
PCFG

- Central condition: \(\sum_\alpha P(A \rightarrow \alpha) = 1 \)
- Called a proper PCFG if this condition holds
- Note that this means \(P(A \rightarrow \alpha) = P(\alpha \mid A) = \frac{f(A, \alpha)}{f(A)} \)
- \(P(T \mid S) = \frac{P(T, S)}{P(S)} = P(T, S) = \prod_i P(RHS_i \mid LHS_i) \)

PCFG

- What is the PCFG that can be extracted from this single tree:

 \(S \quad (NP \quad (Det \quad the) \quad (NP \quad man)) \)

 \(VP \quad (VP \quad (V \quad played) \quad (NP \quad (Det \quad a) \quad (NP \quad game))) \)

 \(PP \quad (P \quad with) \quad (NP \quad (Det \quad the) \quad (NP \quad dog))) \)

- How many different rhs \(\alpha \) exist for \(A \rightarrow \alpha \) where \(A \) can be \(S, NP, VP, PP, Det, N, V, P \)
PCFG

\[
S \rightarrow NP \ VP \quad c = 1 \quad p = 1/1 \quad = 1.0 \\
NP \rightarrow Det \ NP \quad c = 3 \quad p = 3/6 \quad = 0.5 \\
NP \rightarrow man \quad c = 1 \quad p = 1/6 \quad = 0.1667 \\
NP \rightarrow game \quad c = 1 \quad p = 1/6 \quad = 0.1667 \\
NP \rightarrow dog \quad c = 1 \quad p = 1/6 \quad = 0.1667 \\
VP \rightarrow VP PP \quad c = 1 \quad p = 1/2 \quad = 0.5 \\
VP \rightarrow V NP \quad c = 1 \quad p = 1/2 \quad = 0.5 \\
PP \rightarrow P NP \quad c = 1 \quad p = 1/1 \quad = 1.0 \\
Det \rightarrow the \quad c = 2 \quad p = 2/3 \quad = 0.67 \\
Det \rightarrow a \quad c = 1 \quad p = 1/3 \quad = 0.33 \\
V \rightarrow played \quad c = 1 \quad p = 1/1 \quad = 1.0 \\
P \rightarrow with \quad c = 1 \quad p = 1/1 \quad = 1.0
\]

- We can do this with multiple trees. Simply count occurrences of CFG rules over all the trees.
- A repository of such trees labelled by a human is called a TreeBank.

Ambiguity

- Part of Speech ambiguity
 saw \rightarrow noun
 saw \rightarrow verb

- Structural ambiguity: Prepositional Phrases
 I saw (the man) with the telescope
 I saw (the man with the telescope)

- Structural ambiguity: Coordination
 a program to promote safety in ((trucks) and (minivans))
 a program to promote ((safety in trucks) and (minivans))
 ((a program to promote safety in trucks) and (minivans))
Ambiguity ← attachment choice in alternative parses

Parsing as a machine learning problem

- $S = $ a sentence
 $T = $ a parse tree
 A statistical parsing model defines $P(T | S)$
- Find best parse: $\arg \max_T P(T | S)$
- $P(T | S) = \frac{P(T, S)}{P(S)} = P(T, S)$
- Best parse: $\arg \max_T P(T, S)$
- e.g. for PCFGs: $P(T, S) = \prod_{i=1}^{n} P(RHS_i | LHS_i)$
Adding Lexical Information to PCFG (Collins 99, Charniak 00)

\[
P_h(\text{VB} \mid \text{VP}, \text{indicated}) \times P_l(\text{STOP} \mid \text{VP}, \text{VB}, \text{indicated}) \times \\
P_r(\text{NP}(\text{difference}) \mid \text{VP}, \text{VB}, \text{indicated}) \times \\
P_r(\text{PP}(\text{in}) \mid \text{VP}, \text{VB}, \text{indicated}) \times \\
P_r(\text{STOP} \mid \text{VP}, \text{VB}, \text{indicated})
\]
Evaluation of Parsing

Consider a candidate parse to be evaluated against the truth (or gold-standard parse):

candidate: (S (A (P this) (Q is)) (A (R a) (T test)))
gold: (S (A (P this)) (B (Q is) (A (R a) (T test))))

In order to evaluate this, we list all the constituents

<table>
<thead>
<tr>
<th>Candidate</th>
<th>Gold</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,4,S)</td>
<td>(0,4,S)</td>
</tr>
<tr>
<td>(0,2,A)</td>
<td>(0,1,A)</td>
</tr>
<tr>
<td>(2,4,A)</td>
<td>(1,4,B)</td>
</tr>
<tr>
<td></td>
<td>(2,4,A)</td>
</tr>
</tbody>
</table>

Skip spans of length 1 which would be equivalent to part of speech tagging accuracy.

Precision is defined as \(\frac{\text{\#correct}}{\text{\#proposed}} = \frac{2}{3} \) and recall as \(\frac{\text{\#correct}}{\text{\#in gold}} = \frac{2}{4} \).

Another measure: crossing brackets,

candidate: [an [incredibly expensive] coat] (1 CB)
gold: [an [incredibly [expensive coat]]]

Evaluation of Parsing

Bracketing recall \(R \) = \(\frac{\text{num of correct constituents}}{\text{num of constituents in the goldfile}} \)

Bracketing precision \(P \) = \(\frac{\text{num of correct constituents}}{\text{num of constituents in the parsed file}} \)

Complete match = % of sents where recall & precision are both 100%

Average crossing = \(\frac{\text{num of constituents crossing a goldfile constituent}}{\text{num of sents}} \)

No crossing = % of sents which have 0 crossing brackets

2 or less crossing = % of sents which have \(\leq 2 \) crossing brackets
Statistical Parsing Results

\[
F_1\text{-score} = \frac{2 \cdot \text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}
\]

<table>
<thead>
<tr>
<th>System</th>
<th>≤ 100wds F1-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift-Reduce (Magerman, 1995)</td>
<td>84.14</td>
</tr>
<tr>
<td>PCFG with Lexical Features (Collins, 1999)</td>
<td>88.19</td>
</tr>
<tr>
<td>PCFG with Lexical Features (Charniak, 1999)</td>
<td>89.54</td>
</tr>
<tr>
<td>n-best Re-ranking (Collins, 2000)</td>
<td>89.74</td>
</tr>
<tr>
<td>Unlexicalized Berkeley parser (Petrov et al, 2007)</td>
<td>90.10</td>
</tr>
<tr>
<td>n-best Re-ranking (Charniak and Johnson, 2005)</td>
<td>91.02</td>
</tr>
<tr>
<td>Tree-insertion grammars (Carreras, Collins, Koo, 2008)</td>
<td>91.10</td>
</tr>
<tr>
<td>Ensemble n-best Re-ranking (Johnson and Ural, 2010)</td>
<td>91.49</td>
</tr>
<tr>
<td>Forest Re-ranking (Huang, 2010)</td>
<td>91.70</td>
</tr>
<tr>
<td>Unlabeled Data with Self-Training (McCloskey et al, 2006)</td>
<td>92.10</td>
</tr>
</tbody>
</table>

Practical Issues: Beam Thresholding and Priors

- Probability of nonterminal \(X\) spanning \(j \ldots k\): \(N[X, j, k]\)
- Beam Thresholding compares \(N[X, j, k]\) with every other \(Y\) where \(N[Y, j, k]\)
- But what should be compared?
- Just the *inside probability*: \(P(X \Rightarrow \ast t_j \ldots t_k)\) written as \(\beta(X, j, k)\)
- Perhaps \(\beta(\text{FRAG}, 0, 3) > \beta(\text{NP}, 0, 3)\), but NPs are much more likely than FRAGs in general
Practical Issues: Beam Thresholding and Priors

- The correct estimate is the *outside probability*:

\[P(S \Rightarrow t_1 \ldots t_{j-1} X t_{k+1} \ldots t_n) \]

written as \(\alpha(X, j, k) \)

- Unfortunately, you can only compute \(\alpha(X, j, k) \) efficiently after you finish parsing and reach \((S, 0, n)\)

Practical Issues: Beam Thresholding and Priors

- To make things easier we multiply the prior probability \(P(X) \) with the inside probability

- In beam Thresholding we compare every new insertion of \(X \) for span \(j, k \) as follows:
 Compare \(P(X) \cdot \beta(X, j, k) \) with the most probable \(Y \)
 \(P(Y) \cdot \beta(Y, j, k) \)

- Assume \(Y \) is the most probable entry in \(j, k \), then we compare

 \[
 \text{beam} \cdot P(Y) \cdot \beta(Y, j, k) \quad (1) \\
 P(X) \cdot \beta(X, j, k) \quad (2)
 \]

- If \((2) < (1) \) then we prune \(X \) for this span \(j, k \)

beam is set to a small value, say 0.001 or even 0.01.

- As the beam value increases, the parser speed increases (since more entries are pruned).

- A simpler (but not as effective) alternative to using the beam is to keep only the top \(K \) entries for each span \(j, k \)
Experiments with Beam Thresholding

No pruning, No prior
Beam = 10^{-5}, No prior
Beam = 10^{-4}, No prior

No pruning, w/ prior
Beam = 10^{-5}, w/ prior
Beam = 10^{-4}, w/ prior

Sentence length vs. Time (secs)