Modelling Color Constancy with Neural Networks


The many algorithms used for color correction make a series of assumptions that try to constrain the problem of finding the scene illuminant under which a given image was taken. In contrast, the neural network we have developed has no explicit constraints. All rules are implicitly learned from the training set, which contains a large number of artificially generated scenes. The network estimates the chromaticity of the illuminant under which the given image was taken. This allows for a diagonal transformation of the image to another illuminant.

Full text (postscript)

Full text (zipped postscript)

Keywords: color, color constancy, neural networks

copyright 1997 V. Cardei, B.V. Funt, K. Barnard