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Abstract—In this paper we examine the use of base vector
applications as a tool for classifying an application’s usage
of a processor’s resources. We define a series of base vector
applications, simple applications designed to place directed stress
on a single processor resource. By co-scheduling base vector
applications with a target application on a CMT multi-threaded
processor, we can determine an application’s sensitivity to a
particular processor resource, and an application’s intensity
with respect to a particular processor resource. An application’s
sensitivities and intensities for a set of processor resources
comprise that applications sensitivity and intensity vectors. We
envision that sensitivity and intensity vectors could be used for (a)
understanding micro-architectural properties of the application;
(b) forecasting an optimal co-schedule for an application on
a multi-threaded processor; (c) evaluating the suitability of a
particular architecture or micro-architecture for the workload
without executing the workload on that architecture. We describe
the methods for constructing base vector applications and for
obtaining an application’s sensitivity and intensity vectors. Using
UltraSPARC T1 (Niagara) as the experimental platform, we
validate base vectors as a method for classifying applications
by showing that sensitivity and intensity vectors can be used
to successfully predict the optimal static co-runner for an
application.

I. INTRODUCTION

For a given processor architecture, an application’s use

of key resources such as level 1 (L1) instruction and data

cache, level 2 (L2) unified cache, floating point units and

branch predictors will determine in large extent how well a

given application will perform on a specified processor, and

how well an application will run when co-scheduled with

other applications on a multi-threaded (MT) processor. To a

varying extent, each target application will stress a processor

across the above resources differently. Understanding how an

application places stress on each processor resource is key to

discovering how optimal co-schedules can be constructed and

how different processor architectures may be more optimal

for a given application set. In this paper we explore the use

of base vector applications to classify target applications with

respect to their resource use and to use that classification to

forecast relative performance in different co-schedules. Base

vector applications, or BV applications, are small applications

designed to both (a) place direct stress on a single processor

resource and (b) be significantly dependent on that processor

resource. (Resource dependence means that the BV applica-

tion’s performance will significantly degrade if it is deprived

of that resource.) By co-scheduling the BV applications with

target applications and measuring the relative slowdowns of

each application, we determine an applications sensitivity and

intensity with respect to a particular processor resource.

Within the context of this paper, sensitivity refers to how an

application’s performance responds to a lack of a particular

processor resource. By co-scheduling a target application

with a BV application that stresses a particular resource and

measuring the target application’s slowdown (relative to when

it runs on its own) we determine the target application’s

sensitivity to that resource. For example, if a target application

co-scheduled with a BV application stressing resource X

experiences a greater slowdown then when co-scheduled with

a BV application stressing resource Y, we say that the target

application is more sensitive to resource X than to resource Y.

Intensity refers to how much an application stresses a

particular processor resource. Recall that BV applications are

designed to be dependent on the resource they target, so by

co-scheduling a particular BV application with target appli-

cations and measuring the slowdown of the BV application

(relative to when it runs on its own), we determine the target

application’s relative intensity to the resource targeted by the

BV application. For example, if the BV application targeting

resource X experiences greater slowdown with application A

than with application B, we say that application A is more

intensive with respect to resource X than application B. An

application’s sensitivity and intensity vectors can be used for

understanding the micro-architectural properties of the appli-

cation and for analyzing how an application’s performance

will change depending on the co-schedule on a multi-threaded

processor, or depending on the architecture it runs on. Some

concrete examples are:

Relative performance in different co-schedules: Given

a target application T sensitive to a resource Y, and two

applications A and B, such that A is more intensive with respect

to Y than B, we can project that T will run more slowly in

co-schedule (T,A) than in co-schedule (T,B).

Cross-microarchitecture performance forecast: Given a

target application T sensitive to a resource Y, we can project

that T will perform worse on microarchitecture A than on

microarchitecture B if A has less of the resource to which

Y is sensitive to than B. The amount of resources on the two

micro-architectures can be measured using BV applications,



by comparing the relative performance of each BV applica-

tions on the two micro-architectures. Cross-microarchitectural

studies are only outlined here and will be studied in future

work.

In this paper we validate the effectiveness of BV technique

to expose applications microarchitectural resource sensitivities

and intensities by using it to forecast relative performance

in co-schedules. For our experiments we use the Sun Mi-

crosystems UltraSPARC T1 system with eight four-way multi-

threaded cores [6]. We find in general that we can correctly

predict the most optimal co-runner in 4 out of 6 case studies

that we carried out.

The remainder of this paper is organized as follows. Section

2 describes the construction of the BV applications. Section

3 describes the methods we used to gather sensitivity and

intensity data from base vectors and target applications. Sec-

tion 4 provides the detailed results of intensity and sensitivity

measurements and the base vector co-scheduling experiments.

Section 5 discusses related work, and Section 6 outlines future

work and summarizes.

II. BV APPLICATIONS

BV applications are very small programs designed to place

stress on a single processor resource. By placing stress on

a single processor resource and measuring the effect of this

stress on the run times of other target applications, the relative

usage of this processor resource by the target application can

be determined in a relative manner. For the UltraSPARC T1

processor, we created 5 base vectors for each of the following

processor resources:

• L1 Instruction Cache (I-Cache-L1)

• L1 Data Cache (D-Cache-L1)

• L2 Cache via L1 I-Cache (I-Cache-L2)

• L2 Cache via L1 D-Cache (D-Cache-L2)

• Floating Point Unit (FPU)

We have not created a BV application for the branch predic-

tor, because branch prediction is not done on the UltraSPARC

T1 [12].

A. Instruction Cache Base Vectors

The instruction cache base vectors are simple applications

designed to stress the instruction cache of the processor. The

intent of the application is to create the worst-case usage of

the instruction cache. For the UltraSPARC T1 platform, this

is accomplished in assembly language using the unconditional

branch instruction. By creating a loop of branch instructions

the size of the instruction cache, an application can create

intense pressure on the instruction cache while exhibiting little

or no stress on other resources.

As outlined in 1, the instruction cache base vector consists

of a series of unconditional branch instructions, evenly spaced

by the size of a single cache line. When the processor executes

these instructions, a high degree of stress will be placed on

the instruction cache because only 2 instructions per cache

line will be executed (branch instruction and branch delay

slot) and the loop is the size of the entire cache. To complete
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Fig. 1. I-Cache Base Vector Application

the construction of the base vector, the assembly code snippet

outlined in figure 1 is cut-and-paste repeated to extend the size

of this simple application to equal the size of the instruction

cache. This code will be executed in a loop a fixed number

of times to construct the overall base vector application. The

number of loop iterations is fixed once at the time of creation

to give a running time of the base application in the range of

30 to 60 seconds. Using the methods described above, both

the ICache- L1 and I-Cache-L2 BV applications are created.

The I-Cache-L1 BV application is sized to 16K bytes for

the UltraSPARC T1 and the branch size is 32 bytes. The I-

Cache-L2 BV application is sized to 3M bytes and the distance

between branch instructions is 64 bytes.

B. Data Cache Base Vectors

The data cache base vectors are constructed using the

concept of ’pointer-chasing’. A region of memory the size

of the data cache is allocated and initialized to contain the

address of the next cache line in memory. A simple piece of

code will continually read the address of the next cache line

in memory from the current line in memory. Repeating this

operation causes the entire data cache to be accessed with

minimal pressure on the instruction cache. An assembly code

segment and associated data region are shown below.

As outlined in figure 2, the data cache base vector is created

by initializing a data cache sized region of memory. The next

cache line address is written at initialization time to the first

word of each cache line. These addresses are loaded and used

in immediate succession by the code highlighted in Figure 2 on
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Fig. 2. D-Cache Base Vector Application

the left. This code essentially loads in a new cache line each

instruction executed. The replicated load instructions shown

are cut-and-paste repeated in the application several times to

amortize any instructions required to loop back to the top of

the code. The instruction size of this base vector however

cannot grow too large, as it will begin to overly stress the

instruction cache, so a balance is struck by keeping the loop

size to within 10 instruction cache lines.

1) Operating system page sizes: For the instruction and

data cache base vectors above, the general strategies require

a large, contiguous region of memory to stress the cache. On

the UltraSPARC T1 processor, the caches (both L1 and L2)

are physically indexed. As both the instruction and data cache

base vectors are created and executed as user programs, both

applications will be arbitrarily translated into physical pages

by the operating system using the processor’s translation look-

aside buffer (TLB). Because of the arbitrary mapping by the

TLB into physical address space, the instruction and data base

vectors cannot be directly executed. For the UltraSPARC T1

platform, the Solaris operating system provides an API to

allow the user application to control how memory is mapped

into physical addresses. The memcntl API in Solaris allows the

user to change the size of an arbitrary page mapping, allowing

page sizes up to 256MB. For ICache- L1 base vector a 64KB

physically contiguous page of memory was allocated and used.

This size was sufficient to cover the entire 16KB L1 I-Cache

on the UltraSPARC T1 processor. For D-Cache-L1 base vector,

nothing special had to be done, because the default page size

of 8KB was sufficient to cover the entire 8KB L1 D-Cache on

the UltraSPARC T1. For ICache- L2 and D-Cache-L2 vectors,

a 4MB physically contiguous page of memory was allocated

and used. This size was sufficient to cover the entire 3MB level

2 cache on the UltraSPARC T1 processor. For the instruction

cache base vector, the entire executable region was copied to

this 4MB page and the base vector loop was executed directly

from this region.

C. Floating Point Base Vectors

The floating point base vector application implemented

for this paper was written in assembly language and simply

executes a long string of floating point operations, one directly
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Fig. 3. BV Application run-times when running alone and co-scheduled with
the identical BV application.

after the other. The long string of floating point operations is

executed in a loop a fixed number of iterations to create an

overall execution time ranging between 30 to 60 seconds. As

with the data cache vectors, the unrolled string of floating point

operations cannot be made too large for fear of creating too

much stress on the instruction cache, thus for this paper the

floating point base vector was kept to within 10 cache lines.

D. Validation of BV Applications

We present measurements showing that BV applications

meet their goals of (a) stressing a particular resource and (b)

being dependent on a particular resource. Figure 3 shows the

run times of each of the five BV applications when they are

run alone and when they are co-scheduled with the identical

BV application. The data shows that in co-scheduled runs each

BV application experiences significant relative slowdown. This

demonstrates (a) that the co-scheduled BV-application stresses

the target resource, and (b) the BV-application depends on that

target resource.

III. METHODS OF MEASUREMENT

In order to determine a target application’s sensitivity to-

ward a specific processor resource, we co-schedule a specific

base vector application with the target application. By co-

scheduling each individual base vector with each application,

we can create a histogram which outlines the application’s

sensitivity toward a specific processor resource. In turn, we

can also measure the slowdown of the base application itself

to determine how intensely a target application uses a specified

processor resource. For target applications, we chose the SPEC

CPU2000 suite of applications. We used 21 of the 26 available

applications, excluding the FORTRAN benchmark applica-

tions due to compile issues with the UltraSPARC T1/GNU

toolchain.

For this paper, the experiments outlined below were under-

taken on the UltraSPARC T1 processor. The UltraSPARC T1

processor features 8 independent CPU cores with 4 threads



per core. In order to measure the effect of co-scheduling

base vector applications and target benchmark applications,

processes were set to execute on the same core. The data

collected for this paper can be summarized into three distinct

groups of results recorded.

A. Target Application Sensitivity

In order to determine a target application’s sensitivity to

a given processor resource, we co-schedule each processor

resource BV application with the target application. We can

then measure the percent slowdown of the target application

with each base vector application by comparing the absolute

time to complete the target application versus the time to

complete the application running alone. The result is a single

normalized slowdown measure for each BV application for a

given target application. We measure the relative slowdown

for six of the SPEC CPU2000 benchmark applications across

each of the four BV applications targeting the caches (I-Cache-

L1, I-Cache- L2, D-Cache-L1, and D-Cache L2), producing

24 separate measurements in total. We limit the sensitivity

analysis to six applications: art, gzip, crafty, vortex, parser

and twolf. We were unable to run all combinations of BV-

applications and target applications (88 runs in total, requiring

close to 88 hours) due to limited availability of the test

hardware. Nevertheless, our data allows us to gain insight into

the effectiveness of the base vector technique. In the future,

we will extend our sensitivity analysis for the entire SPEC

CPU2000 suite.

B. Target Application Intensity

To determine how intensely a given target application uses

a specified processor resource, we co-schedule the target ap-

plication with each of the four BV applications. To determine

intensity, we measure the effect of the target application on

the base vector application by comparing the absolute run

time of the BV application when co-scheduled with the target

application against a run of the BV application running alone.

We provide results for each base vector against each of the 21

SPEC CPU2000 benchmarks outlined above for 84 reported

results in total. Due to the short relative run times of the base

vector applications (approximately 1 minute) versus the longer

SPEC benchmark run times, we were able to report results for

all base vectors against all SPEC benchmarks outlined above.

C. Relative Performance in Co-Schedules

To determine how each SPEC benchmark performs when

co-scheduled with each other, we use the six SPEC bench-

marks identified above and co-schedule them with each other

in pairs, measuring the relative slowdown of each benchmark.

Given the measured performance effects of co-scheduling the

benchmark applications, we would like to determine whether

sensitivity and intensity measures for a given pair of target

applications can be used to determine the relative slowdowns

when the benchmark applications are co-scheduled. To gather

the real benchmark co-scheduling information, the benchmark

applications are co-scheduled on the same core as outlined
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Fig. 4. SPEC benchmark application sensitivities to cache resources.

above. Each benchmark application is run in a series of three

iterations, with the results of the second iteration taken to

ensure a complete overlapped execution of the two benchmark

applications.

IV. RESULTS

As outlined in the previous section, the methods for data

collection and the results can be categorized into three groups,

each of which is outlined below.

A. SPEC Benchmark Sensitivities

Outlined in Figure 4 are the measurements of the run

times for the various SPEC benchmark applications when co-

scheduled with each of the BV applications. (Although not

explicitly tabulated in this paper, it should be noted that the

variances of the run times gathered for each co-schedule run

were very low, certainly within 1 or 2 percent of the total

run times tabulated.) The histogram in this figure outlines

the percent slowdown of the SPEC benchmark application

when co-scheduled with each BV application. Slowdown

percentages are calculated as a percentage of the time for the

benchmark application to run alone, thus a 100% slowdown

would indicate an absolute co-schedule runtime twice that

of the time for the benchmark application to run alone. A

large increase in benchmark runtime when co-scheduled with

a BV application targeting resource Y indicates the target

application’s relative sensitivity to resource Y.

Observing figure 4, the range of sensitivities of the various

benchmark applications can be seen. The art SPEC benchmark

appears extremely sensitive to the L2 cache. This result is

similar to one reported in previous work, which showed that

art is very sensitive to the L2 cache when the processor cache

size is between 1MB and 1.25MB [9]. That same work also

reported that twolf is more sensitive to the L2 cache than

crafty, gzip and parser for cache sizes larger than 512KB (no

results reported for vortex). Our results similarly show that

twolf is more sensitive to the L2 cache compared to crafty,

gzip and parser.
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B. SPEC Benchmark Intensities

Outlined in figures 5 and 6 are the percent slowdown

measurements for the BV applications when run alone vs.

when co-scheduled with each SPEC benchmark application.

As each BV application is designed to be dependent on

a single processor resource, the slowdown observed in its

runtime when co-scheduled with a benchmark application can

be attributed entirely to the amount stress that the benchmark

application puts on the BV applications target resource. As

such, these figures show the benchmark application’s relative

intensity toward each processor resource. As shown in figures

5 and 6, the changes in the base vector application’s run times

are very pronounced, with the largest (over 300%) slowdown

seen by the L2 D-Cache base vector application when co-

scheduled with the mcf SPEC benchmark. Another application

with high L2 cache intensity is art. These results confirm

previously reported high L2 cache intensities for mcf and art

[1,4,5].
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C. Floating Point BV Application Usage

We present the measurements showing benchmark appli-

cations intensity with respect to the floating point unit. (We

did not measure benchmark applications sensitivities to the

FPU due to time constraints.) To gain a measure for intensity,

the floating point BV application was co-scheduled with each

of the SPEC benchmark applications, noting the absolute run

times of the base vector when co-scheduled with each of the

benchmark applications. The results are shown in Figure 7. As

shown in figure 7, the intensities of each of the floating point

SPEC CPU benchmarks (shown on the left) vary to a large ex-

tent. The SPEC integer applications show zero intensity, save

two. The integer benchmarks eon and vpr show considerable

floating point intensity. (The FPU of integer benchmark vpr

exceeds that of floating point benchmark ammp!) The presence

of floating point instructions was confirmed by inspecting

the source code for both SPEC benchmark applications. The

ability of the BV applications to detect this floating point

activity without prior knowledge about the application in

some respect affirms the base vector approach to application

classification.

D. SPEC Benchmark Co-Scheduling Results

Given a target application A co-scheduled with applications

B and C, we wanted to determine if A’s relative slowdown

in co-schedules (A, B) and (A, C) can be determined using

the sensitivity vector of A and the intensity vectors of B

and C. Intuitively, if A is sensitive to a resource Y, it will

experience a larger slowdown with B than with C if B is

more intensive with respect to resource Y. We use inten-

sity and sensitivity vectors of co-scheduled applications to

predict relative slowdowns in different co-schedules. In our

experiments, an application’s sensitivity vector is the set of

slowdowns (in percent) for that application when co-scheduled

with the four BV applications targeting the cache resources.

An application’s intensity vector is the set of slowdowns

(in percent) for the four BV applications when they are co-

scheduled with the target application. We will refer to these
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Fig. 8. ’gzip’ slowdowns and dot-products

two vectors for a hypothetical application T as:

~Vsens = (A,B,C,D) (1)

~Vintens = (W,X, Y, Z) (2)

where A,B,C,D represent the target application’s slowdowns

when run with each of the four BV applications and W,X,Y,Z

represent each of the four BV application’s slowdowns when

run with the target application.

Assuming that we want to forecast A’s relative slowdown in

co-schedules (A, B) and (A, C), we take the two dot products:

DPAB = ~Vsens(A) • ~Vintens(B) (3)

DPAC = ~Vsens(A) • ~Vintens(C) (4)

Comparing the two dot products, we expect that a higher

value of the dot product will indicate a larger predicted

slowdown for A in the corresponding co-schedule.

We experiment with two techniques: (1) Full dot products:

we use the dot products of the entire sensitivity and intensity

vectors to make slowdown estimates. (2) Partial dot prod-

ucts: we use the target application’s most sensitive resource

only. This amounts to using only a single dimension of the

sensitivity vector outlined above.

For each of our chosen six SPEC benchmarks we present

the relative slowdown for each benchmark when co-scheduled

with each other benchmark and the full and partial dot-

products for each SPEC benchmark application. All measure-

ments are shown in figures 8 through 13.

Examining the results for art in figure 9, we see a clear

visual relationship between the calculated dot-products and the

relative slowdowns of art when co-scheduled with the other

SPEC benchmarks. For the other benchmarks the results are

not as clear, but do exhibit some similarity to the measured

slowdowns.

The results for twolf also exhibit a clear relationship be-

tween the calculated dot-products and the measured slow-

downs for each co-schedule. The only exception in the twolf
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Fig. 9. ’art’ slowdowns and dot-products

 0

 5

 10

 15

 20

 25

 30

gzip
art

twolf
crafty

vortex

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6
B

en
ch

m
ar

k 
S

lo
w

do
w

n 
(%

)

D
ot

-P
ro

du
ct

 (
D

P
)

Slowdowns and Dot-Products (parser)

slowdown

 0

 5

 10

 15

 20

 25

 30

gzip
art

twolf
crafty

vortex

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6
B

en
ch

m
ar

k 
S

lo
w

do
w

n 
(%

)

D
ot

-P
ro

du
ct

 (
D

P
)

Slowdowns and Dot-Products (parser)

full-DP

 0

 5

 10

 15

 20

 25

 30

gzip
art

twolf
crafty

vortex

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6
B

en
ch

m
ar

k 
S

lo
w

do
w

n 
(%

)

D
ot

-P
ro

du
ct

 (
D

P
)

Slowdowns and Dot-Products (parser)

partial-DP

Fig. 10. ’parser’ slowdowns and dot-products
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Fig. 11. ’twolf’ slowdowns and dot-products
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Fig. 12. ’crafty’ slowdowns and dot-products
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Fig. 13. ’vortex’ slowdowns and dot-products

results is the dot-product prediction of art as the worst co-

runner. The over-pessimistic prediction of art was also made

for parser, crafty and vortex (figures 10, 12, 13). The very

large I-Cache-L2 and D-Cache-L2 intensity measurements for

art account for these over estimates. Looking at the partial

dot-products for parser, crafty, and vortex, the over-pessimistic

results are replaced with more accurate predictions of the worst

co-runners as parser, crafty and vortex are all most sensitive

to the L1 I-Cache and thus do not use art’s very large intensity

values in their partial dot-product calculations.

Examining the results for crafty and vortex further, we see

the partial dot-products very accurately depict the relative

slowdowns of the target application when co-scheduled with

each of the SPEC benchmarks. The sensitivity profiles for

these two applications are nearly identical, with a well defined

most sensitive resource (L1 I-Cache). The partial dot-products

correctly forecast that the worst slowdowns will occur when

those applications are run with each other. The partial dot

products also correctly forecast that art will be the best co-

runner for these applications. We now refer to Figure 10,

showing the slowdowns and dot-products for parser. Referring

to figure 4, parser does not show well defined sensitivities

for any particular resource, and so it is inherently difficult

to estimate the best co-schedule. Nevertheless, the partial dot

product correctly predicted the optimal co-schedule with art.

E. Discussion

In the previous section, we have seen the partial dot-product

correctly predict the most optimal static co-runner for four of

the six SPEC benchmarks identified. Also, outlined in figures

8 through 13, we have visually presented the relationship

between the measured slowdowns of each of the benchmark

co-schedules and the dot-products calculated using sensitivity

and intensity vectors. Although this technique has shown some

amount of success in choosing an optimal co-schedule, the

results do not show this to be a clearly accurate technique for

the creation of task schedules.

As mentioned in the introduction, the base vector technique

is not ideally suited for a scheduler application, but rather

may be used to simply gain insight into the behavior of an

application. While the results for optimal co-schedules are

less than perfect, the relationships between the dot-products

calculated and measured slowdowns are quite pronounced. In

order to improve the accuracy of the information provided

by BV applications we intend to expand the technique to;

(a) create independent L2 BV applications which currently

are dependent, (b) measure the range of cache sensitivities by

varying the size of the BV applications.

V. RELATED WORK

Similar work mostly relates to predicting application slow-

downs in different co-schedules on multi-threaded processors.

Snavely et al. used a heuristical approach to estimate which

schedules will show a better symbiosis with respect to resource

sharing [10]. They used hardware counter measurements of

different resources as inputs into their heuristical model. They

have not, however, developed a formal classification scheme

with respect to applications resource intensity and sensitivity.

Another body of work has to do with development of explicit

analytical models for estimating slowdowns in different co-

schedules [1,2,3,7,11]. The models are more complex than

the base vector technique, largely microarchitecture dependent,

and do not provide a way to classify the applications sensitivity

and intensity. One recent study that is perhaps the most

similar to ours is on Micro-architectural Scheduling Assist

(MASA) [8]. MASA is a tool that co-schedules applications

on a hyper-threaded processor based on their resource use (a

concept similar to our resource intensity). That study, however,

does not provide a formal well-defined technique to measure

intensities and does not take into account the sensitivities.

VI. SUMMARY AND FUTURE WORK

In this paper we introduced the concept of a base vector

and outlined a technique to use the BV applications for

microarchitectural classification of an application’s resource

use. In an attempt to validate to some extent the ability of

the BV applications to act as an application classifier, we



applied their use to the task of choosing optimal co-schedules.

Using an application’s most sensitive resource as input into

the predictive model, we find that 4 out of 6 optimal static co-

runners were predicted correctly. The BV applications ability

to find the most intensive and sensitive resources used by an

application may be considered partially validated. Although

used for co-scheduling in this paper, the BV applications and

methods outlined are most likely better suited for alternate

tasks. Researchers and other CPU power users could employ

the classification abilities of the BV applications to peer

into target applications. By understanding how the scientific

workload uses processor resources, and understanding the

workload’s sensitivities to processor resources, better choices

could be made when identifying hardware resources for

projects and workload optimization efforts could be focused

to reduce application sensitivities that are identified. Base

vector applications could be used in embedded systems to

identify application resource intensities and sensitivities for

environments which may not be conducive toward other types

of information retrieval. Hardware counters on such systems

may be lacking in numbers and may be difficult to interface to.

Simulations of such systems tend to be rudimentary and may

not allow gathering of detailed information regarding cache ac-

cess and other microarchitectural resource usage. Furthermore,

hardware counters alone may not provide enough detailed

information about the embedded workload to enable hardware

and software designers to make intelligent decisions regarding

the next generation of device. Using BV applications, the

embedded workload’s most sensitive resources can be easily

found, giving direct and meaningful input into which areas of

the hardware to improve in the next generation.
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