Metamer Mismatching

Alexander D. Logvinenko, Brian Funt, Christoph Godau

Abstract—A new algorithm for calculating the metamer mismatch volumes that arise in colour vision and colour imaging is introduced. Unlike previous methods, the proposed method places no restrictions on the set of possible object reflectance spectra. As a result of such restrictions, previous methods have only been able to provide approximate solutions to the mismatch volume. The proposed new method is the first to characterize precisely the metamer mismatch volume for any possible reflectance.

Index Terms—Colour vision, metamerism, metamer mismatching, metamer set, metamer mismatch volume. EDICS: ELI-COL

Table I

Ψ = (ψ1, ..., ψn)	a set of sensors (ψ1, ..., ψn)
Ψ = (ψ1, ..., ψn)	iTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	jTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	kTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	lTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	mTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	nTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	oTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	pTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	qTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	rTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	sTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	tTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	uTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	vTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	wTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	xTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	yTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	zTh sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	A Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	B Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	C Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	D Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	E Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	F Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	G Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	H Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	I Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	J Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	K Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	L Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	M Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	N Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	O Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	P Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	Q Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	R Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	S Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	T Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	U Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	V Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	W Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	X Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	Y Th sensor response to spectral reflectance function x(λ)
Ψ = (ψ1, ..., ψn)	Z Th sensor response to spectral reflectance function x(λ)

Note that the final published version does include several important updates. If you would like a copy of the final version, simply mail to funt@sfu.ca

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

I. INTRODUCTION

Two objects that look the same colour under one light can differ in colour under a second light. An important reason for the difference in perceived colour of the two objects under the second light is that although the tristimulus values of the two objects may be identical under the first light, it is possible that they differ under the second. In other words, they are metamer matches (i.e., invoke identical sensor response triplets) under the first light, but fail to match, and hence are no longer metamers, under the second. This phenomenon is called metamer mismatching [1].

If a colour under one light can become two colours under a second light, then it is natural to ask: What is the range of possible colours that might be observed under the second light? More specifically, given a tristimulus value under, say, CIE illuminant D65, what is the set of possible tristimulus values that could arise under, say, CIE illuminant A? This set has been proven to be a convex body [2], and it is commonly known as the metamer mismatch volume [1]. In general, given the spectral power distributions of two illuminants and the tristimulus values of an object under one illuminant, the problem is to compute the metamer mismatch volume. It suffices to compute only the metamer mismatch volume boundary, because the body is completely specified by its boundary.

Metamer mismatch volumes are both of theoretical and practical importance. They are important in image processing for many reasons. For example, in camera sensor design it is well known that there is a trade-off between image noise and colour fidelity. Sensors whose sensitivity functions are not within a linear transformation of the human cone sensitivity functions will introduce error, but this error has been difficult to quantify. The size of the metamer mismatch volume induced by the change from cone to camera sensitivity functions is potentially a good measure of the error, but requires an accurate method for computing the metamer mismatch volumes of the sort proposed here. Metamer mismatch volumes are also relevant to the problem of color ‘calibration,’ often referred to as the colour correction problem. Again, because of the differences in cone versus camera sensitivities, there is no unique answer as to how RGB camera responses should be mapped to human cone responses or a standard colour space such as CIE XYZ. Urban et al. [3] and Finlayson et al. [4]–[6] have used characteristics such as the center of gravity of (approximate) metamer mismatch volumes as a means of improving colour correction.

Metamer mismatch volumes are also very important in defining the limits of both human and machine-based colour constancy. In the image processing field, the goal of computational colour constancy has been to provide colour descriptors that are independent to the incident illumination. With the method described here, Logvinenko et al. have shown serious metamer mismatching can be [7] and therefore how the issue of colour constancy needs to be redefined [8]. Furthermore, in the related field of lighting design metamer mismatch volumes are also important. In particular, lights leading to the smallest mismatch volumes are naturally expected to yield the best colour rendering [9], [10]. All of these applications have been limited, until now, by the lack of a method for computing metamer mismatch volumes precisely.

In terms of theoretical importance, work on calculating mismatch volumes has a long history (for a review see, e.g., Wyszecki & Stiles, 1982). Generally, previous methods have been based on generating metameric reflectances under one

1That is, a closed convex set such that it can be radially “inflated” to include any element of the ambient vector space.
illuminant and then evaluating their tristimulus values under a second illuminant, thus producing points lying within the mismatch volume. However, it remains an unsolved problem as to how to describe fully the set of all the reflectances metameric to a given one under some fixed illumination, and hence these methods do not completely specify the metamer mismatch volume. Instead, they generate a sampling of the infinite set of possible metameric reflectances without a clear understanding how the resulting sample represents the complete set of metameric reflectances. A key limitation of such an approach is that the accuracy of representing the mismatch volumes by the cluster of points obtained can be poor. Moreover, as the precise boundary of the mismatch volume remains unknown, there is no way to determine the true accuracy of the approximation. The situation only becomes worse when the reflectances are sampled from a finite-dimensional subset of the infinite dimensional set of all the reflectances [3], [11]. Of the methods proposed thus far, none directly describes the theoretical limits of the metamer mismatch volume. In other words, none provides the metamer mismatch volume’s boundary.

In this report we investigate the boundary of the metamer mismatch volume from the formal point of view and then provide an algorithm for computing the metamer mismatch volumes for arbitrary, strictly positive illuminants and strictly positive sensor sensitivity functions\(^2\), without placing any restrictions on the reflectances.

II. METAMER MISMATCHING THEORY

Consider a set of sensors \(\Phi = (\varphi_1, \ldots, \varphi_n) \), the response of each of which to a reflecting object with spectral reflectance function \(x(\lambda) \) illuminated by a light with spectral power distribution \(p(\lambda) \) is given by

\[
\varphi_i(x) = \int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} x(\lambda) p(\lambda) r_i(\lambda) \, d\lambda \quad (i = 1, \ldots, n),
\]

where \([\lambda_{\text{min}}, \lambda_{\text{max}}]\) is the visible spectrum interval, and \(r_i(\lambda) \) is the spectral sensitivity of the \(i \)-th sensor. The vector \(\Phi(x) = (\varphi_1(x), \ldots, \varphi_n(x)) \) of the sensor responses will be referred to as the colour signal produced by the sensor set \(\Phi \) in response to \(x(\lambda) \) illuminated by \(p(\lambda) \). In the case of trichromatic human colour vision \(n = 3 \), and \(r_1(\lambda), r_2(\lambda), r_3(\lambda) \) are the human spectral sensitivities known as cone fundamentals [12]. Alternatively, \(r_1(\lambda), r_2(\lambda), \) and \(r_3(\lambda) \) can be treated as the sensors’ spectral sensitivity functions of a digital camera or similar device.

Different objects may happen to produce equal colour signals. Such objects are called metameric. Specifically, two objects with spectral reflectance functions \(x(\lambda) \) and \(x'(\lambda) \) are called metameric under the illuminant \(p(\lambda) \) if they produce equal colour signals, that is, \(\Phi(x) = \Phi(x') \). Object metamerism depends on the illuminant. If the illuminant \(p(\lambda) \) is replaced by a different illuminant \(p'(\lambda) \) the hitherto metameric objects may cease to be metameric.

\(^2\)We believe that this positivity constraint is not a serious limitation in practice since any illuminant or sensor function can be approximated by a strictly positive function as accurately as required.

words, the former metamers may no longer match under the new illuminant. This phenomenon—metamers becoming non-metamers—is called metameric mismatching [1].

Metamer mismatching may also happen if the spectral sensitivity of the sensors changes. An illuminant change (i.e., replacing \(p(\lambda) \) with \(p'(\lambda) \)) is, formally, equivalent to changing the spectral sensitivity functions of the sensors. As a consequence, we will consider the general situation when a set of abstract colour mechanisms \(\varphi_1, \ldots, \varphi_n \) is replaced by a different set \(\psi_1, \ldots, \psi_n \). The new set of colour mechanisms can be understood as the result of altering either the illuminant or the colour mechanisms’ spectral sensitivities, or both. Metamer mismatching arising solely from a change in illuminant will be referred to as illuminant-induced metamer mismatching, while that arising solely from a change of colour mechanisms as observer-induced metamer mismatching.

The general case of metamer mismatching concerns a set of colour mechanisms, \(\Phi = (\varphi_1, \ldots, \varphi_n) \), each member of which is thought of as a linear functional on the set \(X \) of all the spectral reflectance functions (i.e., \(0 \leq x(\lambda) \leq 1 \)), that is, \(\varphi_i : X \rightarrow \mathbb{R} \), where \(\mathbb{R} \) is the real line, and \(i = 1, \ldots, n \). Every colour mechanism \(\varphi_i \) will be assumed to have the form as in (1):

\[
\varphi_i(x) = \int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} x(\lambda) s_i(\lambda) \, d\lambda \quad (i = 1, \ldots, n),
\]

where \(s_i(\lambda) \) is the spectral weighting function fully specifying the colour mechanism \(\varphi_i \). For example, \(s_i(\lambda) \) might amount to \(p(\lambda) r_i(\lambda) \). Consider another set of colour mechanisms, \(\Psi = (\psi_1, \ldots, \psi_n) \), with the spectral weighting functions \(s'_1(\lambda), \ldots, s'_n(\lambda) \). We will assume that both sets of colour mechanisms are linearly independent, and that \(\Phi \) and \(\Psi \) are not a linear transformation of one another.

Note that both \(\Phi \) and \(\Psi \) can be considered as linear maps (referred to as colour maps) of the form: \(X \rightarrow \mathbb{R}^n \) where \(\mathbb{R}^n \) is the arithmetic n-dimensional vector space. The sets of all colour signals, that is, \(\Phi(X) \) and \(\Psi(X) \), form convex bodies in \(\mathbb{R}^n \) [2], which are usually referred to as object-colour solids [1].

Given an object \(x_0 \in X \), the \(\Phi \) pre-image, \(\Phi^{-1}(\Phi(x_0)) \) (i.e., \(\Phi^{-1}(\Phi(x_0)) = \{x \in X : \Phi(x) = \Phi(x_0)\} \)), of its colour signal \(\Phi(x_0) \) is the set of all the objects metameric to \(x_0 \) (with respect to \(\Phi \)), and is referred to as its metamer set. Generally, when this set of metameric objects \(\Phi^{-1}(\Phi(x_0)) \) is mapped by \(\Psi \) into the \(\Psi \)-object-colour solid, it will be spread into a non-singleton set. It is the resulting set that is referred to as the metamer mismatch volume. More formally, the \(\Psi \)-image of the set of the \(\Phi \)-metamers, \(\Psi(\Phi^{-1}(\Phi(x_0))) \) is called the metamer mismatch volume associated with \(x_0 \).

Given colour maps, \(\Phi = (\varphi_1, \ldots, \varphi_n) \) and \(\Psi = (\psi_1, \ldots, \psi_n) \), let us consider a map \(\Upsilon : X \rightarrow \mathbb{R}^{2n} \) such that \(\Upsilon(x) = (z, z') \), where \(z = (\varphi_1(x), \ldots, \varphi_n(x)) \) and \(z' = (\psi_1(x), \ldots, \psi_n(x)) \). The corresponding object-colour solid \(\Upsilon(X) \) is a convex body in \(\mathbb{R}^{2n} \). The \(\Phi \)-object-colour solid, \(\Phi(X) \), is the \(z \)-projection of \(\Upsilon(X) \):

\[
\Phi(X) = \{z \in \mathbb{R}^n : (z, z') \in \Upsilon(X), \quad z' \in \mathbb{R}^n\}.
\]
Similarly, given an object \(x_0 \in \mathcal{X} \) and its \(\Phi \) colour signal \(z_0 = \Phi(x_0) \), the metamer mismatch volume \(\Psi(\Phi^{-1}(z_0)) \) forms a cross-section of \(\Upsilon(\mathcal{X}) \); namely, \(\{ z' \in \mathbb{R}^n : (z_0, z') \in \Upsilon(\mathcal{X}) \} \).

To gain some intuition into metamer sets, metamer mismatch volumes, and why a metamer mismatch volume corresponds to a cross-section of the \(\Upsilon(\mathcal{X}) \)-object-colour solid, consider the one-dimensional case of a pair of colour mechanisms \(\varphi_1 \) and \(\psi_1 \). In this case, the colour maps become simply \(\Phi = \varphi_1 \) and \(\Psi = \psi_1 \), and the object-colour solid \(\Upsilon(\mathcal{X}) \) becomes a convex region in 2-dimensions as shown in Figure 1.

For Figure 1 the CIE 1931 \(\bar{x}(\lambda) \) colour matching function has been used as the single underlying sensor. Under CIE illuminants D65 and \(A \) (spectral power distributions \(p_{D65}(\lambda) \) and \(p_A(\lambda) \)) the spectral weighting functions of the corresponding colour mechanisms are then \(p_{D65}(\lambda)\bar{x}(\lambda) \) for \(\varphi_1 \), and \(p_A(\lambda)\bar{x}(\lambda) \) for \(\psi_1 \).

For a given colour signal \(z \) obtained under D65, finding the metamer mismatch volume means determining the set of possible colour signals \(z' \) arising under \(A \) whose corresponding reflectances would be metamer to \(z \) under D65. The shaded region in Figure 1 shows \(\Upsilon(\mathcal{X}) \). Any point \((z, z') \) inside \(\Upsilon(\mathcal{X}) \) represents the corresponding colour signals that would arise from a given object under illuminants D65 and \(A \). As can be seen from the figure, using \(z = 35 \) as an example, all points \((z, z') \) on the vertical line \(z = 35 \) and lying within the shaded area arise from objects that are metameric under D65 and also result in colour signal \(z' \) under \(A \). Hence the \(z' \) values from the vertical line segment lying within the shaded area make up the metamer mismatch volume for the colour signal \(z = 35 \) under D65. In this example, the ‘volume’ degenerates to a line segment on the vertical \((z') \) axis. The boundary of the volume is given by the \(z' \) values at the intersections of the \(z = 35 \) line with the boundary of \(\Upsilon(\mathcal{X}) \) (i.e., \(z' = 20.5 \) and \(z' = 58 \)).

The situation is analogous for a trichromatic colour device, but \(\Upsilon(\mathcal{X}) \) becomes 6-dimensional and the cross-section is defined by the intersection of a 3-dimensional affine subspace with the boundary of \(\Upsilon(\mathcal{X}) \). In the general n-dimensional case, determining the metamer mismatch volume (denoted as \(\mathcal{M}(z_0; \Phi, \Psi) \)) associated with the colour signal \(z_0 = \Phi(x_0) \) when switching from colour map \(\Phi \) to colour map \(\Psi \) means determining its boundary, \(\partial \mathcal{M}(z_0; \Phi, \Psi) \). Consider also the boundary of the 2n-dimensional object-colour solid \(\Upsilon(\mathcal{X}) \), denoted \(\partial \Upsilon(\mathcal{X}) \). The boundary \(\partial \mathcal{M}(z_0; \Phi, \Psi) \) is determined by intersecting \(\Upsilon(\mathcal{X}) \) with the n-dimensional affine subspace containing \(z_0 = \Phi(x_0) \).

The object-colour solid, \(\Upsilon(\mathcal{X}) \), is determined by its boundary, \(\partial \Upsilon(\mathcal{X}) \), which in turn is fully specified by those objects that map to the boundary. In the colour literature reflectances mapping to the color-solid boundary are called \(\mu \)-optimal [1]. A method of evaluation of the optimal reflectances has been described elsewhere [2], [13]. Similarly, the metamer mismatch volume \(\mathcal{M}(z_0; \Phi, \Psi) \) is fully determined by its boundary, \(\partial \mathcal{M}(z_0; \Phi, \Psi) \). In this report we present a theoretical method and its computational implementation that for the first time provides a means of determining the reflectances that map to the mismatch volume boundary. We will refer to such reflectances as μ-optimal with respect to \(\mathcal{M}(z_0; \Phi, \Psi) \), or just μ-optimal when it is clear which metamer mismatch volume is meant.

Let us denote the set of optimal reflectances for \(\Upsilon(\mathcal{X}) \) as \(O(\mathcal{T}) \). Given a \(z_0 \) in the \(\Phi \)-subspace, \(\partial \mathcal{M}(z_0; \Phi, \Psi) \) will be defined by the \(\Psi \)-images of those optimal reflectances \(x_{\text{opt}} \in O(\mathcal{T}) \) satisfying the following equation:

$$
\Phi(x_{\text{opt}}) = z_0.
$$

In other words, all the optimal reflectances satisfying this equation will be \(\mu \)-optimal, that is, they will be mapped by \(\Psi \) to the boundary of the metamer mismatch volume:

$$
\partial \mathcal{M}(z_0; \Phi, \Psi) = \{ z' = \Psi(x_{\text{opt}}) : \Phi(x_{\text{opt}}) = z_0 \}.
$$

It is not possible to solve this equation directly because the set of possible optimal reflectances is infinite. However, optimal reflectances \(O(\mathcal{T}) \) lend themselves to finite parameterisation [2], [13]. The possibility of such parameterisation emerges from the fact that the optimal reflectances are step-like functions that can be characterized by a finite number of transition wavelengths.

Historically, Schrödinger was the first to claim that the optimal spectral reflectance functions can take only two values: either 0 or 1 [14]. Moreover, he conjectured that for human colour vision the optimal spectral reflectance functions have
the form of elementary step functions. Following the terminology accepted by other authors [2], [13], [15], functions
\[
x_m (\lambda; \lambda_1, ..., \lambda_m) = \sum_{i=1}^{m} (-1)^{i-1} x_1 (\lambda; \lambda_i)
\]
and
\[
1 - x_m (\lambda; \lambda_1, ..., \lambda_m),
\]
where
\[
x_1 (\lambda; \lambda_1) = \begin{cases} 0, & \text{if } \lambda < \lambda_1 \\ 1, & \text{if } \lambda > \lambda_1 \\ \end{cases};
\]
\[
\lambda_{\text{min}} < \lambda_1 < \lambda_2 < ... < \lambda_m < \lambda_{\text{max}},
\]
called the \textit{elementary step functions of type }m\textit{, with }\lambda_1, ..., \lambda_m\textit{ being referred to as \textit{transition wavelengths}}.

Schroedinger believed that for human vision the optimal spectral reflectance functions were of type }m\textit{ < 3. However, this is not correct. As pointed out by some other researchers [13], [15], [16], the number of transition wavelengths may exceed the number of the colour mechanisms. More generally, a theorem has been proved by a Russian mathematician, Vladimir Levin, showing that for a colour map }\Phi\textit{ based on colour mechanisms having continuous spectral weighting functions }s_1 (\lambda), ..., s_n (\lambda),\textit{ an elementary step function with transition wavelengths }\lambda_1, ..., \lambda_m\textit{ will be an optimal spectral reflectance function if }\lambda_1, ..., \lambda_m\textit{ are the only zero-crossings of the following equation [2]:}
\[
k_1 s_1 (\lambda) + k_2 s_2 (\lambda) + ... + k_n s_n (\lambda) = 0,
\]
where }k_1, k_2, ..., k_n\textit{ are arbitrary real numbers (at least one of which is not equal to zero). We would like to emphasize that while we use this theorem in the development of our algorithm, the tests described later in the paper verify that the algorithm works without relying on the theorem as proof.

It also follows that the perfect reflector and the perfect absorber\(^1\) are optimal reflectances. Formally, they correspond to the case when Eq. 6 has no zero-crossings [2].

Given another colour map }\Psi\textit{ with continuous spectral weighting functions }s'_1 (\lambda), ..., s'_n (\lambda)\textit{ and combining it with }\Phi\textit{ to form the colour map }\Upsilon\textit{, the zero-crossings of the equation
\[
k_1 s_1 (\lambda) + ... + k_n s_n (\lambda) + k'_1 s'_1 (\lambda) + ... + k'_n s'_n (\lambda) = 0 \quad (7)
\]
determine an optimal spectral reflectance function with respect to }\Upsilon\textit{. Let us designate this optimal reflectance }x (\lambda; k, k')\textit{, where }k = (k_1, ..., k_n)\textit{, and }k' = (k'_1, ..., k'_n)\textit{.}

Now consider an arbitrary reflectance }x_0\textit{ mapping to colour signal }z_0 = \Phi (x_0)\textit{ that lies in the interior\(^2\) of the object-colour solid }\Phi (\Lambda)\textit{. Then }\partial M (z_0; \Phi, \Psi)\textit{ in the object-colour solid }\Psi (\Lambda)\textit{ will be implicitly defined by the following equation with respect to }k\textit{ and }k'\textit{:}
\[
\Phi (x (\lambda; k, k')) = z_0.
\]
\(^1\)Perfect reflector (respectively absorber) takes the value 1 (respectively 0) for every wavelength in }[\lambda_{\text{min}}, \lambda_{\text{max}}]\textit{.}
\(^2\)It has been shown that for the colour mechanisms with positive spectral weighting functions the optimal reflectances have no metamers [2]. It follows that there is no metamer mismatching for the boundary points of the object-colour solid. In other words, the metamer mismatch volume for such points degenerates to a point. As such a case is of no interest, we exclude the boundary points from further consideration.

As }z_0\text{ is an interior point, }k'\text{ cannot equal zero, since if }k' = 0\text{ }x (\lambda; k, k')\text{ is an optimal spectral reflectance function with respect to }\Phi\text{, and thus }\Phi (x (\lambda; k, k'))\text{ would be on the }\Phi\text{-object-colour-solid boundary.}

Let us consider the particular situation when }n = 3\text{. In this case, given }z_0 = (z_1, z_2, z_3)\text{, Eq. 8 can be expanded as:}
\[
\begin{align*}
\varphi_1 (x (\lambda; k, k')) &= z_1, \\
\varphi_2 (x (\lambda; k, k')) &= z_2, \\
\varphi_3 (x (\lambda; k, k')) &= z_3.
\end{align*}
\]
Denote the }\Psi\text{ image of }x_0\text{ as }z'_0 = (z'_1, z'_2, z'_3)\text{, i.e., }\Psi (z_0) = z'_0,\text{ and let us introduce a polar coordinate system }\left(\rho, \beta, \gamma\right)\text{ in the }\Psi\text{ subspace with its origin at }\Psi (x_0)\text{. Let }x (\lambda; k, k')\text{ satisfy Eq. 9. Then we have}
\[
\begin{align*}
\psi_1 (x (\lambda; k, k')) &= z'_1 = \rho \cos \beta \sin \gamma, \\
\psi_2 (x (\lambda; k, k')) &= z'_2 = \rho \sin \beta \sin \gamma, \\
\psi_3 (x (\lambda; k, k')) &= z'_3 = \rho \sin \gamma.
\end{align*}
\]

Note that if Eq. 7 admits a solution given vectors }k\text{ and }k'\text{ it will admit the same solution given vectors }\sigma k\text{ and }\sigma k',\text{ where }\sigma\text{ is an arbitrary non-zero real number. Hence, we need only consider vectors }k\text{ and }k'\text{ such that the resultant vector }\left(k, k'\right)\text{ lies on the unit sphere in }\mathbf{R}^2,\text{ that is,}
\[
||(k_1, k_2, k_3, k'_1, k'_2, k'_3)||_2 = 1. \quad (11)
\]

Taken together, equations (9 - 11) define a two-dimensional manifold. Indeed, for each choice of }\beta\text{ and }\gamma\text{, equations (9 - 11) can be resolved with respect to }k_1, k_2, k_3, k'_1, k'_2, k'_3,\text{ and }\rho.\text{ Furthermore, equations (9 - 11) implicitly define a function }\rho (\beta, \gamma)\text{ that determines the boundary }\partial M (z_0; \Phi, \Psi)\text{ induced by the point }\Phi (x_0)\text{. In other words, given }\beta\text{ and }\gamma,\text{ we have 7 equations in 7 unknowns. Resolving these equations one gets the location of the metamer mismatch volume’s boundary in the direction }\left(\beta, \gamma\right)\text{. Figure 2 illustrates the situation for a dichromatic sensor system.}

Practical solution of equations (9 - 11) is complicated by the fact that different sets of }k_1, k_2, k_3, k'_1, k'_2, k'_3\text{ might determine the same optimal reflectance. For example, for the case of positive spectral weighting functions, Eq. 7 will have no roots when }k_1, ..., k_n, k'_1, ..., k'_n\text{ are either all positive, or all negative. Since the human spectral sensitivity functions are everywhere positive, all positive and all negative sets of }k_1, k_2, k_3, k'_1, k'_2, k'_3\text{ bring about the same two optimal reflectances: the perfect reflector and absorber. As these belong to the }\Phi\text{-object-colour solid boundary }\partial \Phi (\Lambda)\text{ (i.e., they are not interior points in }\Phi (\Lambda)),\text{ they need not be considered further. Hence, we see that parameterising the optimal reflectances in terms of }k_1, ..., k_n, k'_1, ..., k'_n\text{ is perhaps not the best approach.}

We need a more convenient parameterisation of the optimal reflectances. We begin with the fact that Eq. 7 has a rather straightforward geometrical interpretation; namely, the roots of Eq. 7 are those wavelengths at which the spectral curve\(^5\) intersects the hyperplane in }\mathbf{R}^{2n}\text{ passing through the origin and}

\(^5\)In the }2n\text{-dimensional colour signal space determined by the colour mechanisms }\left(\varphi_1, ..., \varphi_n, \psi_1, ..., \psi_n\right),\text{ the curve }
\[
\partial \Phi (\Lambda) = \left\{ \varphi_1 (\mu - \lambda), \varphi_2 (\mu - \lambda), ..., \varphi_n (\mu - \lambda), \psi_1 (\mu - \lambda), \psi_2 (\mu - \lambda), ..., \psi_n (\mu - \lambda) \mid \lambda \in [\lambda_{\text{min}}, \lambda_{\text{max}}]\right\}
\]
such an optimal reflectance as \(x(\lambda; \lambda_1, ..., \lambda_5) \). If it satisfies Eq. 3 then it belongs to \(\partial M(z_0; \Phi, \Psi) \). In other words, that optimal reflectance is on the boundary of the metamer mismatch volume. Hence, we again have a system of 6 equations in 6 unknowns similar to the equations in (9) and (10):

\[
\begin{align*}
\varphi_1 (x(\lambda; \lambda_1, ..., \lambda_5)) &= z_1, \\
\varphi_2 (x(\lambda; \lambda_1, ..., \lambda_5)) &= z_2, \\
\varphi_3 (x(\lambda; \lambda_1, ..., \lambda_5)) &= z_3, \\
\psi_1 (x(\lambda; \lambda_1, ..., \lambda_5)) - z_1' &= \rho \cos \beta \sin \gamma, \\
\psi_2 (x(\lambda; \lambda_1, ..., \lambda_5)) - z_2' &= \rho \sin \beta \sin \gamma, \\
\psi_3 (x(\lambda; \lambda_1, ..., \lambda_5)) - z_3' &= \rho \sin \gamma.
\end{align*}
\]

Choosing \(\beta \) and \(\gamma \) defines a direction in the \(\Phi \) subspace relative to the point \((z_1, z_2, z_3)\). Solving equations (12) with respect to \(\lambda_1, ..., \lambda_5 \) and \(\rho \) yields the location of the boundary in the direction \((\beta, \gamma)\).

Note that setting 2 of the 5 wavelengths \(\lambda_1, ..., \lambda_5 \) to be \(\lambda_{\text{min}} \) and \(\lambda_{\text{max}} \) while varying the other 3, we obtain all the optimal reflectances (if any) having 3 or 4 transition wavelengths, rather than 5. Generally, there might also exist optimal reflectances (for the object-colour solid \(\Upsilon(\lambda) \)) with fewer than 3 wavelength transitions. However, most of them map to the \(\Phi \)-object-colour-solid boundary. As we consider only internal points \(z_0 \) in \(\Phi(\lambda) \), only a small fraction of the optimal reflectances with 1 and 2 transition wavelengths can be potentially \(\mu \)-optimal; and an even smaller fraction of those—namely the ones satisfying the first 3 equations in (12)—will indeed be \(\mu \)-optimal. Therefore, solving equations (12) we will obtain virtually all the points on \(\partial M(z_0; \Phi, \Psi) \). If one does not want to risk missing even a small fraction of the points on \(\partial M(z_0; \Phi, \Psi) \), then one has to resort to solving equations (9 - 11) which guarantees, in theory, no loss of \(\mu \)-optimal reflectances at all.

III. Calculating Metamer Mismatch Volumes

Let us apply this theory to the problem of evaluating the metamer mismatch volumes induced for the CIE 1931 standard observer when moving from CIE illuminant D65 to CIE illuminant A. In this case, Equation 7 takes the form

\[
\begin{align*}
(k_1 s_1(\lambda) + k_2 s_2(\lambda) + k_3 s_3(\lambda)) p_{D65}(\lambda) \\
+ (k_1' s_1(\lambda) + k_2' s_2(\lambda) + k_3' s_3(\lambda)) p_A(\lambda) &= 0
\end{align*}
\]

where \(s_1(\lambda), s_2(\lambda) \) and \(s_3(\lambda) \) are the CIE 1931 colour matching functions, and \(p_{D65}(\lambda) \) and \(p_A(\lambda) \) are the spectral power distributions for CIE illuminants D65 and A.

For the CIE 1931 colour matching functions, the optimal reflectances turn out to be elementary step functions of type \(m < 3 \), in accord with Schrödinger’s conjecture [13], [16]. Yet, the optimal stimuli for the 6-dimensional \(\Upsilon \)-object-colour solid are not necessarily elementary step functions of type \(m < 6 \).

In other words, random choices of the 5 transition wavelengths might lead to solutions to equation (12) with more than 5 roots.

It follows that if one uses only the elementary step functions of type \(m \leq 5 \) (let us denote these \(\mathcal{O}_m \)) one will get only an approximation to the full 6-dimensional object-colour solid
when measured along any direction from the object-colour
\(O \).

The set of all the elementary step functions of type \(m < n \)
\(\Upsilon (X) \). More formally, given a colour map \(f : X \rightarrow \mathbb{R}^m \), and
the set of all the elementary step functions of type \(m < n \)
(\(\text{written as } O_n \)), let us call the volume confined by \(f (O_n) \)
an \((n-1)\)-transition approximation to \(f (X) \). The 2-transition
approximation to the 3-dimensional object-colour solid based
on the cone photopigment spectral sensitivities was found to
deivate by not more than 1% from the true object-colour solid
when measured along any direction from the object-colour solid’s center [13]. In many computational tasks such deviation
may be neglected. Although we have not evaluated the difference
between \(\Upsilon (X) \) and its 5-transition approximation,
we decided to use the latter when computing the metamer mismatch
match volumes since this made our computations much simpler.

Obviously, intersecting the 5-transition approximation to \(\Upsilon (X) \)
with the corresponding affine 3-dimensional subspace through \(z_0 \) will produce a volume (denoted \(M_5 (z_0; \Phi, \Psi) \)) lying inside the metamer mismatch volume \(M (z_0; \Phi, \Psi) \). Let
us call it the 5-transition approximation to \(M (z_0; \Phi, \Psi) \).

Given a point \(z_0 = (z_1, z_2, z_3) \) in the object-colour solid \(\Phi (X) \),
the boundary of the 5-transition approximation to the metamer mismatch volume \(M (z_0; \Phi, \Psi) \) (denoted as \(\partial M_5 (z_0; \Phi, \Psi) \)) in the object-colour solid \(\Psi (X) \) is implicitly
defined by the following equations with respect to the transition
wavelengths \(\lambda_1, \ldots, \lambda_5 \):

\[
\begin{align*}
\varphi_1 (x_5 (\lambda; \lambda_1, \ldots, \lambda_5)) &= z_1, \\
\varphi_2 (x_5 (\lambda; \lambda_1, \ldots, \lambda_5)) &= z_2, \\
\varphi_3 (x_5 (\lambda; \lambda_1, \ldots, \lambda_5)) &= z_3, \\
\psi_1 (x_5 (\lambda; \lambda_1, \ldots, \lambda_5)) &= z_1' = \rho \cos \beta \sin \gamma, \\
\psi_2 (x_5 (\lambda; \lambda_1, \ldots, \lambda_5)) &= z_2' = \rho \sin \beta \sin \gamma, \\
\psi_3 (x_5 (\lambda; \lambda_1, \ldots, \lambda_5)) &= z_3' = \rho \sin \gamma,
\end{align*}
\]

where \(x_5 (\lambda; \lambda_1, \ldots, \lambda_5) \) is an elementary step function of type
\(m = 5 \). The difference between equations (14) and (12) is
that (14) involves an elementary step function with the
transition wavelengths \(\lambda_1, \ldots, \lambda_5 \), whereas (12) involves an
elementary step function that potentially has more than 5
transition wavelengths, but specifically including \(\lambda_1, \ldots, \lambda_5 \).
The additional transition wavelengths can be determined by
finding all the intersections of the spectral curve \(\vec{\sigma} (\lambda) \)
with the hyperplane defined by the origin and the five points on the
spectral curve \(\vec{\sigma} (\lambda_1), \ldots, \vec{\sigma} (\lambda_5) \) determined by \(\lambda_1, \ldots, \lambda_5 \).

IV. MATLAB IMPLEMENTATION DETAILS

The following describes one approach that has been implemented
in Matlab to calculate the metamer mismatch volumes. In fact, any method of solving equations (14) will suffice. To
solve equations (14) for \(\rho (\beta, \gamma) \), we need to choose the origin
of the polar coordinate system so as to define \(\beta, \gamma \), and \(\rho \).
Although not strictly necessary, it is preferable to choose an
origin that belongs to, or better still lies inside, the metamer
match volume. When the point \(z_0 \) is specified as the \(\Psi \)
colour signal of some known reflectance, say, \(x_0 \), then the
\(\Psi \)-image of \(x_0 \) lends itself as a natural choice for the origin.
When the point \(z_0 \) is given simply as some \(\Phi \) colour signal
(without relating it to any reflectance), choosing a point inside
the metamer mismatch volume might appear to be somewhat
more problematic since we do not yet know what that volume is. However, any reflectance that is metameric to \(z_0 \) under \(\Phi \)
will suffice.

To find a metamer to \(z_0 \) we make use of a rectangular metamer of the kind introduced by Logvinenko (2009) [13]. For any given point \(z_0 = (z_1, z_2, z_3) \) in the object-colour solid, \(\Phi (X) \), its rectangular metamer is defined as a rectangular reflectance spectrum that is a linear combination of an elementary step function of type \(m < 3 \) and \(x_0, \lambda (\lambda) = 0.5 \). As the rectangular metamer is specified by three numbers—\(\alpha, \delta \) and \(\lambda \)—it will be denoted as \(x_{\alpha \delta \lambda} \) (for more detail see Logvinenko, 2009).
To find the rectangular metamer for \(z_0 \) the code of Go-
dau et al. [17], [18] is used. The resulting rectangular metamer
\(x_{\alpha \delta \lambda} \) is by construction metamer to \(z_0 \). Therefore, the point
\(\Psi (x_{\alpha \delta \lambda}) \) is guaranteed to be in the metamer mismatch volume.
Although highly unlikely, \(\Psi (x_{\alpha \delta \lambda}) \) could potentially belong
to the metamer mismatch volume boundary, and therefore not
lie strictly inside the mismatch volume. As such, it would be
an unsuitable choice for the origin \((z_1', z_2', z_3') \) of the polar
coordinate system. To ensure that we have a point strictly
inside the metamer mismatch volume, we take an arbitrary
point on its boundary and then use the midpoint between it
and \(\Psi (x_{\alpha \delta \lambda}) \) as the origin.

Determining \(\rho (\beta, \gamma) \) proceeds in two steps. Given \((\beta, \gamma) \)
the first step is the more difficult one and involves finding
the optimal 5-transition step function \(x_{\text{opt}} = x_5 (\lambda; \lambda_1, \ldots, \lambda_5) \)
metamer to \(z_0 \) such that \(\Psi (x_5 (\lambda; \lambda_1, \ldots, \lambda_5)) \) lies in
the direction defined by \((\beta, \gamma) \). The second step is then simply
to calculate \(\rho \) directly using \(x_{\text{opt}} \) from the first step.

To accomplish the first step we minimized the following
objective function formed as the sum of two error measures,
\[
E (x_{\text{opt}}) = E_{\Phi} (x_{\text{opt}}) + E_{\Psi_{\beta \gamma}} (x_{\text{opt}}).
\]
The first term corresponds to the constraints provided by
equations 14 and is
\[
E_{\Phi} (x_{\text{opt}}) = \| \Psi (x_{\text{opt}}) - z_0 \|.
\]
The second term ensures that the 5-transition reflectance lies in
the desired direction under \(\Psi \) and is defined by
\[
E_{\Psi_{\beta \gamma}} (x_{\text{opt}}) = \arccos \left(\frac{\hat{u} \cdot (\Psi (x_{\text{opt}}) - z_0)}{\| \Psi (x_{\text{opt}}) - z_0 \|} \right),
\]
where \(\hat{u} = (\sin (\beta) \cos (\gamma), \sin (\beta) \sin (\gamma), \cos (\beta)) \) is the unit
vector in the direction given by \((\beta, \gamma) \). Once \(x_{\text{opt}} \) has been
found, \(\rho \) can be directly calculated as
\[
\rho = \| \Psi (x_{\text{opt}}) - \Psi (x_0) \|.
\]

The above method means that \(\partial M_5 (z_0; \Phi, \Psi) \) (i.e., the
boundary of the 5-transition approximation to the metamer
match volume \(M (z_0; \Phi, \Psi) \)) can be precisely computed
as the distance \(\rho (\beta, \gamma) \) from the chosen origin \((z_1', z_2', z_3') \)
to the boundary in any given direction as specified by the
angles \(\beta \) and \(\gamma \). To model the entire boundary, one possibility is
to step through values of \(\beta \) and \(\gamma \) and thereby obtain a regular
sampling of the boundary. However, such an approach is
rather time-consuming. In order to speed up computation when
preparing the data for the present report, we produced a large
number of random points over \(\partial \Upsilon (O_5) \) (i.e., the boundary.

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
of the 5-transition approximation to $\Upsilon(\mathcal{X})$ by generating random 5-transition reflectances $x_{opt} = x_5(\lambda_1, \lambda_2, \ldots, \lambda_5)$ and then selected only those that minimize $|\Phi(x_{opt}) - z_0|$. This eliminates the angular term involved in $E_{\Phi,\Psi}(x_{opt})$ and significantly speeds up the calculation, but has the disadvantage that the resulting points are not systematically distributed over the boundary $\partial M_5(z_0; \Phi, \Psi)$. It should be borne in mind that such an approach differs from that of previous authors in that we generated reflectances metameric to x_{opt} that belonged not just to the colour solid $\Phi(\mathcal{X})$ but to the boundary $\partial M_5(z_0; \Phi, \Psi)$. For this reason our selected reflectances are restricted to belonging to the boundary of the 5-transition approximation to the metamer mismatch volume $\partial M_5(z_0; \Phi, \Psi)$ rather than belonging to the full metamer mismatch volume (most likely inside it), as is the case for the methods described in previous studies.

V. EXAMPLES

The Matlab implementation provides the opportunity to explore the true potential extent of metamer mismatching for the first time. Consider the simple case of a flat grey reflectance under illuminant $D65$ versus A. Figure 3 shows the 5-transition approximation to the metamer mismatch volume arising at the centre of the object-colour solid (i.e., for $\Phi(x_{0.5})$ where $x_{0.5} = 0.5$, the flat grey reflectance) for the CIE 1931 2-degree standard observer when the illumination changes from $D65$ to A. Interestingly, its shape (Figure 4) roughly resembles that of the object-colour solid. The 5-transition approximation $M_5(\Phi(x_{0.5})); \Phi, \Psi)$ is clearly elongated. Figure 5 depicts the same volume (i.e., $M_5(\Phi(x_{0.5}); \Phi, \Psi)$) in colour opponent coordinates based on the Smith & Pokorny cone fundamentals. From this figure it is clear that $M_5(\Phi(x_{0.5}); \Phi, \Psi)$ is elongated along the $(S-(L+M))$ axis which is believed to be associated with the yellow-blue mechanism [19], [20]. Therefore, the metamers looking achromatic under illuminant $D65$ disperse mainly along the yellow-blue axis under illuminant A. This agrees with our intuition since illuminant A appears more yellowish than $D65$.

Metamer mismatching can be surprisingly dramatic in that it can disperse flat grey into a full hue circle of different hues. For example, Figure 6 shows a circle of hues falling on the boundary of the metamer mismatch volume of flat grey for the case of the lighting changing from a green to a neutral (“white”) illuminant (see reference [21] for the green and neutral spectra). In other words, these are the hues of 20 reflectances as they would be seen under the neutral light. Needless to say, the figure here reproduces the exact hues only approximately. Despite the fact that these 20 reflectances appear so varied in hue under the neutral light, they are, in fact, all metameric to one another, as well as to flat grey, under the green light. Not only does this example have implications

Figure 3. Metamer mismatch volume arising at the centre of the object-colour solid for the flat grey reflectance for a change of illumination from $D65$ to A. The coordinate axes are the CIE XYZ.

Figure 4. Expanded view of the metamer mismatch volume for the case of the flat grey reflectance shown in Figure 3.

Figure 5. Metamer mismatch volume for the flat grey reflectance for a change of illumination from $D65$ to A. The coordinate axes are the Smith-Pokorny cone fundamentals transformed to opponent color axes.
for human colour perception, as discussed by Logvinenko et al. [7], [8] it also has consequences for image processing and machine vision since it shows that the ‘colour’ of an object is not a stable, intrinsic feature since one colour can potentially become many very different colours.

Each reflectance underlying the hue circle is a 5-transition reflectance from the boundary of the metamer mismatch volume for flat grey. The transition wavelengths for each reflectance are listed in Table II. Each reflectance is 0 from \(\lambda_{\text{min}} = 380 \) nm to the first transition wavelength at which point it becomes 1 until the second transition wavelength and so on until \(\lambda_{\text{max}} = 780 \). Table II also lists the XYZ values of the 20 5-transition reflectances illuminated by the green light. Clearly, they are metameric with high precision, which they need to be since it would otherwise imply a flaw in the Matlab implementation.

VI. Metamer Mismatch Index

To quantify the degree of metamer mismatching occurring for a given point in the \(\Phi \) colour space, we introduce a metamer mismatch index \(i_{\text{mm}} (z_0; \Phi, \Psi) \) of the metamer mismatching for a point \(z_0 \) in the \(\Phi \)-object-colour solid induced by a change in the colour mechanisms from \(\Phi \) to \(\Psi \) is defined as a ratio of volumes:

\[
i_{\text{mm}} (z_0; \Phi, \Psi) = \frac{v (M (z_0; \Phi, \Psi))}{v (\Psi (X))}, \tag{15}
\]

where \(v (M (z_0; \Phi, \Psi)) \) is the volume of \(M (z_0; \Phi, \Psi) \), and \(v (\Psi (X)) \) is the volume of the \(\Psi \)-object-colour solid. Note that this index is invariant with respect to any non-singular linear transformation of the colour mechanisms \(\Psi \).

Figure 7 shows the metamer mismatch volumes for a number of points lying along the achromatic interval connecting the black pole (origin) and white pole (apex furthest from origin) of the \(\Psi \)-object-colour solid. The maximum volume occurs at the center \((z_0, 5) \) and volumes decrease towards both poles. The metamer mismatch indices obtained at a finer sampling of locations along the achromatic interval are plotted in Figure 8.

8 plots the metamer mismatch index (15) as a function of position along the achromatic axis from black to white.

VII. Metamer Mismatch Areas in the Chromaticity Diagram

Metamer mismatching can be split into two components: chromaticity mismatching and luminance mismatching. The chromaticity mismatching component can be represented by...
projecting the metamer mismatch volume onto the chromaticity plane. This results in two-dimensional areas in the chromaticity plane showing the spread of chromaticities induced by a change of illuminant (or observer). Figure 9 presents the projection of the metamer mismatch volumes from Figure 7 onto the CIE 1931 xy-chromaticity plane. In chromaticity space, the smallest areas are near the white pole and the largest near the black pole, although in three-dimensions the volumes become small near both poles. One can see from Figure 7 that the solid angle from the origin subtended by the volumes near the black pole is clearly larger than that of the volumes further along the achromatic axis towards the white pole.

Presenting metamer mismatching in two dimensions can be advantageous in some situations. For example, if one is interested only in the metamer mismatching occurring in some plane in the Ψ-subspace, then there is no need to evaluate the entire metamer mismatch volume. Evaluating the boundary contours of the metamer mismatch areas in the given plane will suffice. This can be done by the addition of one equation to the method described above. In particular, given a polar coordinate system (ρ, β, γ) in the Ψ-subspace with its origin at $\Psi(x, \delta, \lambda)$, let

$$F(\beta, \gamma) = 0$$

be an equation of the desired plane through $\Psi(x, \delta, \lambda)$. Fixing β (or γ) and solving equations (12) along with equation (16) with respect to $\lambda_1, \ldots, \lambda_5$, and ρ and γ (respectively β) yields a point on the metamer mismatch area boundary corresponding to the value β (respectively γ).

VIII. CONCLUSION

Metamer mismatching is an important aspect colour, whether in terms of digital colour imaging or human colour perception. It arises when the lighting changes, and also when the spectral sensitivity functions of one observer (or camera) differ from those of another. The metamer mismatch volume describes the set of colour signals that can arise under a change of light or observer. Previous methods of describing the metamer mismatch volume have all provided only approximations to the true volume. These methods probably provide good estimates of the true volume, but without knowing the true volume there is no way of knowing for sure. The results reported here provide a precise description of the true metamer mismatch volume in terms of its boundary. The method is general in that it applies for any reflectance lit by a strictly positive illuminant. The method is demonstrated via a Matlab program for computing metamer mismatch volumes. There are many practical applications for metamer mismatching theory and the associated code, which include better evaluation of the colour rendering properties of light sources, better evaluation of the colour accuracy of digital colour cameras, better rendering of printed or displayed colours, and a better understanding of what might or might not be possible in terms of providing a stable representation of the colour of objects under a change in illuminant.

ACKNOWLEDGMENT

Financial support was provided by the Natural Sciences and Engineering Research Council of Canada.

REFERENCES