BACK TO INDEX

Publications of Aicha BenTaieb
Articles in journal, book chapters
  1. Aicha BenTaieb and Ghassan Hamarneh. Adversarial Stain Transfer for Histopathology Image Analysis. IEEE Transactions on Medical Imaging (IEEE TMI), 000(000):000-000, 2017. Keyword(s): Color, Machine Learning, Microscopy, Deep Learning, Generative Adversarial Network. [bibtex-key = tmi2017]


  2. Aicha BenTaieb, Hector Li-Chang, David Huntsman, and Ghassan Hamarneh. A Structured Latent Model for Ovarian Carcinoma Subtyping from Histopathology Slides. Medical Image Analysis (MedIA), 39:194-205, 2017. Keyword(s): Color, Machine Learning, Microscopy, Deep Learning. [bibtex-key = media2017]


  3. Aicha BenTaieb, Masoud Nosrati, Hector Li-Chang, David Huntsman, and Ghassan Hamarneh. Clinically-Inspired Automatic Classification of Ovarian Carcinoma Subtypes. Journal of Pathology Informatics, 7(1):1-28, 2016. Keyword(s): Color, Machine Learning, Microscopy. [bibtex-key = jpi2016]


Conference articles
  1. Aicha BenTaieb and Ghassan Hamarneh. Artificial Pathologists: Machine Learning Models for Histopathology. In Annual SFU Health Research Day - Women's Health Research Symposium, 2017. Keyword(s): Color, Machine Learning, Microscopy, Deep Learning. [bibtex-key = sfu_health2017]


  2. Aicha BenTaieb and Ghassan Hamarneh. Topology Aware Fully Convolutional Networks For Histology Gland Segmentation. In 2nd Annual Health Technology Symposium, Vancouver, Canada, pages 1, 2017. Keyword(s): Color, Machine Learning, Microscopy, Deep Learning. [bibtex-key = healthtech2017a]


  3. Aicha BenTaieb and Ghassan Hamarneh. Uncertainty Driven Multi-Loss Fully Convolutional Networks for Gland Analysis. In Medical Image Computing and Computer-Assisted Intervention Workshop on Large-scale Annotation of Biomedical data and Expert Label Synthesis (MICCAI LABELS), volume 10552, pages 155-163, 2017. Keyword(s): Color, Machine Learning, Microscopy, Deep Learning. [bibtex-key = miccai_labels2017a]


  4. Aicha BenTaieb and Ghassan Hamarneh. Topology Aware Fully Convolutional Networks For Histology Gland Segmentation. In Lecture Notes in Computer Science, Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 9900, pages 460-468, 2016. Keyword(s): Color, Machine Learning, Microscopy, Deep Learning. [bibtex-key = miccai2016a]


  5. Aicha BenTaieb, Jeremy Kawahara, and Ghassan Hamarneh. Multi-Loss Convolutional Networks for Gland Analysis in Microscopy. In IEEE International Symposium on Biomedical Imaging (IEEE ISBI), pages 642-645, 2016. Keyword(s): Machine Learning, Microscopy, Deep Learning. [bibtex-key = isbi2016a]


  6. Jeremy Kawahara, Aicha BenTaieb, and Ghassan Hamarneh. Deep Features to Classify Skin Lesions. In IEEE International Symposium on Biomedical Imaging (IEEE ISBI), pages 1397-1400, 2016. Keyword(s): Machine Learning, Dermatology, Deep Learning. [bibtex-key = isbi2016b]


  7. Aicha BenTaieb, Hector Li-Chang, David Huntsman, and Ghassan Hamarneh. Automatic Diagnosis of Ovarian Carcinomas via Sparse Multiresolution Tissue Representation. In Lecture Notes in Computer Science, Medical Image Computing and Computer-Assisted Intervention (MICCAI), volume 9349, pages 629-636, 2015. Keyword(s): Machine Learning, Microscopy, Deep Learning. [bibtex-key = miccai2015b]



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Les documents contenus dans ces répertoires sont rendus disponibles par les auteurs qui y ont contribué en vue d'assurer la diffusion à temps de travaux savants et techniques sur une base non-commerciale. Les droits de copie et autres droits sont gardés par les auteurs et par les détenteurs du copyright, en dépit du fait qu'ils présentent ici leurs travaux sous forme électronique. Les personnes copiant ces informations doivent adhérer aux termes et contraintes couverts par le copyright de chaque auteur. Ces travaux ne peuvent pas être rendus disponibles ailleurs sans la permission explicite du détenteur du copyright.




Last modified: Sat Dec 9 17:48:12 2017
Author: hamarneh.


This document was translated from BibTEX by bibtex2html