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Abstract 
In this paper we propose a novel approach to measuring 

curvature in color or vector-valued images (up to 4-dimensions) 
based on quaternion singular value decomposition of a Hessian 
matrix. This approach generalizes the existing scalar-image 
curvature approach which makes use of the eigenvalues of the 
Hessian matrix [1]. In the case of vector-valued images, the 
Hessian is no longer a 2D matrix but rather a rank 3 tensor. We 
use quaternion curvature to derive vesselness measure for tubular 
structures in color or vector-valued images by extending Frangi’s 
[1] vesselness measure for scalar images. Experimental results 
show the effectiveness of quaternion color curvature in generating 
a vesselness map.  

Introduction 
Hessian-based methods have been widely used from curvature 

measures to feature detection [1-10]. The Hessian matrix describes 
the second-order structure of gray-level variations around each 
pixel of the image. There are two main categories where a Hessian 
matrix is used. First, the Hessian and the related second-moment 
matrix have been applied in several operators (e.g., the Harris [11], 
Harris-affine [12], and Hessian-affine [10] detectors) to find 
“interest” points where the local image geometry changes in more 
than one direction.  Hessian-based blob detector in color space is 
proposed in [5].  Second, since the eigenvalues of the Hessian 
matrix at a pixel measure the principal curvatures of the image 
intensity surface, it can be used to detect tubular (linear, vessel-
like) structures, which is useful in many applications [1,3,6-9].  By 
smoothing with Gaussian kernels of various sizes, the normalized 
second-order derivatives indicate the scale and orientation of 
vessels. Vesselness is measured by a large curvature in the cross-
sectional direction and a small curvature along the vessel. By 
eigen-analysis of the Hessian matrix, elongated objects (i.e., 
vessels) are detected wherever the first eigenvalue is positive (or 
negative) and prominent. This process generates a single response 
for both lines and edges, producing a clearer sketch of an image’s 
structure than is usually provided by the magnitude of gradient.   

Existing first-derivative point/blob detectors are applied to 
gray scale images. In the case of color images, the basic approach 
has been to compute the derivatives of each color channel 
separately, and then add them to produce the final result [5]. 
However, the first derivatives of a color edge can be in opposing 
directions, so the summation can lead to cancellation of the 
derivatives. The same situation occurs in second-derivative-based 
Hessian detectors. Existing Hessian-based curvature methods are 
also based on gray scale images, whether the luminance image, or 
a single color channel. For example, Hessian-based multi-scale 
segmentation or enhancement of vessels in retinal images has been 
extensively studied [1,3,6-7], where only the green channel is used. 

To make use of the extra information in a color image, we use 
the quaternion representation of color to extend Hessian curvature 
measures to the color domain. In particular, we extend Frangi’s [1] 

vesselness approach by estimating principle curvatures in RGB 
color space using quaternion operations. Sanqwine [13] introduced 
the quaternion representation of color.  Since quaternions, which 
are an extension of the complex numbers, consist of one real 
component and three imaginary components, a color can be 
represented by a pure quaternion having a real component of zero, 
and imaginary components R, G and B.  With colors encoded in 
quaternions, the entries of the Hessian matrix become quaternions 
that combine secondary derivatives from all color channels in their 
imaginary components. Quaternion singular value decomposition 
(QSVD) [13,14] can then be applied to the Hessian matrix in order 
to find the principle curvatures as described by the two non-
negative, real-valued singular values. These singular values can be 
used to measure vesselness or other features.  

The remainder of the paper is organized as follows. Section 2 
reviews the necessary definitions of the Hessian matrix and its 
eigen-system for scalar images. Section 3 describes the quaternion-
based approach to color curvature, and extends Frangi’s vesselness 
measure to vector-valued images. Section 4 shows the 
experimental results, and Section 5 concludes the paper. 

Curvature and Vesselness Measure 
Viewing an image as an intensity surface, the local shape 

characteristics of the surface at a particular point can be described 
by the Hessian matrix. Lines (i.e., straight or nearly straight 
curvilinear features) and edges have high curvature in one 
direction and low curvature in the orthogonal direction, and this 
characteristic can be measured via the Hessian, H.  For a 2D scalar 
image, H is a 2x2 matrix of the second derivatives of image I 
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The four entries of H are the second-order partial derivatives 

of the scalar image I evaluated at the pixel p = <x, y>, and σ is the 
Gaussian scale of the partial derivatives.  

The eigenvalues of H are called principal curvatures and are 
invariant under rotation. The eigenvectors of H can be used to 
define a coordinate system that is aligned with the dominant 
directions of curvature. Given the ordered eigenvalues of H such 
that |λ1|<|λ2| with corresponding eigenvectors (e1, e2), the 
eigenvectors define an orthogonal coordinate system aligned with 
the direction of minimal e1 and maximal e2 curvature.  

In the case of a vessel-like structure, e1 indicates the 
orientation of the vessel. Thus e1 represents the parallel curvature, 
and e2 the orthogonal curvature. As a vesselness measure for 2D 
images, Frangi [1] uses H to describe the curvature at each point in 
the image. The idea behind eigenvalue analysis of the Hessian is to 
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extract the principal directions in which the local second-order 
structure of the image can be decomposed. Since this directly gives 
the direction of least curvature (along the vessel), application of 
several filters in multiple orientations is avoided.  

Both eigenvalues play an important role in the vesselness 
measure.  In particular, for a vessel we expect |λ1|<|λ2|, with  λ2 < 0 
for bright vessels against a dark background, and λ2 >0 for the 
reverse. Finally the overall magnitude of the eigenvalues should be 
larger at vessels than in background regions. The Frangi filter 
combines these observations in the following two quantities 

 

||

||

2

1

λ
λ=BR ,    (2) 

2
2

2
1|||| λλσ +== HS ,     (3) 

 
Here, RB is the blobness measure in 2D. It is maximized for 

highly blob-like structures and decreases as the difference between 
the parallel and orthogonal curvature increases.  S is the norm of 
the Hessian matrix and measures the relative brightness/darkness 
of the structure. It should become large for vessels. In other words, 
it presents the “unlikelihood” that a pixel is from the background. 
These quantities are combined using exponentiation yielding a 
‘‘vesselness’’ measure (for the bright-vessels-on-dark case) 
defined as follows: 
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The constants β and c are parameters, which control the 

sensitivity of the filter to blobness and backgroundness.  

Eigenvalues of the Color Hessian Matrix 
As mentioned above, when the gradient of a color image is 

computed by adding up the first derivatives of the separate 
channels, the channel derivatives may point in opposing directions 
and cancel one another. DiZenzo [15] argues that a simple 
summation of the derivatives ignores the correlation between the 
channels. A similar problem arises in converting a color image to a 
luminance image in order to calculate its gradient. As a solution in 
the first-derivative case, DiZenzo[15] and Kass[16] proposed the 
color tensor by color gradient, but it does not generalize to the 
color Hessian matrix.  The alternative of solving for the 
eigenvalues of the Hessian matrix separately in each color channel 
generates three pairs of eigenvalues, but these then do not 
immediately fit into the schema of Frangi’s vesselness measure. 
Ming [5] used a weighted combination of Hessian matrices over 
HSI color channels to calculate a color Hessian. However, this 
approach does not eliminate the cancellation problem either. Our 
proposal, which uses the eigenvalues and eigenvectors of a color 
Hessian matrix based on quaternion singular value decomposition 
[13,14], overcomes the cancellation problem. 

In the quaternion representation of a 2D color image, each 
pixel p=<x,y> is represented by a quaternion number 

kIjIiIQ ⋅+⋅+⋅= 321
, where In (with n = 1,2,3) is the nth channel of the 

input image, and i, j, and k are three imaginary bases. The 
quaternion representation of Hessian matrix HQ is constructed as  
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Quaternion Singular Value Decomposition (QSVD) is a 

generalization of  SVD of real or complex numbers to quaternion 
numbers, inheriting similar properties [13,14]. By QSVD, a 
quaternion matrix can be decomposed into two unitary quaternion 
matrices, and one diagonal matrix consisting of real numbers. 
Therefore, existing SVD-based image processing algorithms for 
gray-scale images can be easily extended to color images using 
QSVD. Applications based on QSVD for color image compression 
and segmentation have been demonstrated [13,17]. Here, QSVD  is 
applied to decompose the quaternion-valued matrix HQ in Eqn. (5),  
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where VQ and UQ are two quaternion matrices of eigenvectors, and 
Λ is a real-valued diagonal matrix containing two non-negative 
singular values ξ1 and ξ2. Given the assumption  that quaternion 
eigenvector corresponding to the smaller singular value of the 
Hessian points along the direction of minimal curvature, and that 
the larger singular value points along the direction of the maximum 
curvature, we can continue using Eqn. (4), but now as a color 
vesselness measure. It should be noted that the two singular values 
ξ1 and ξ2 in Eqn. (6) are unsigned magnitudes. To apply the sign 
test in Eqn. (4), we must use the sign of eigenvalue λ2 from the 
corresponding gray-scale image. 

Experiments and Results 
We test our method on a set of color images consisting of 

photomicrographs [18], nature photos, and satellite imagery [19]. 
For each such image, a vessel map image is generated that can be 
used for detection and segmentation of tubular structures, and 
vessel segmentation and enhancement. The main purpose of the 
vessel map is to increase the separability of vessel structures from 
the background. Segmentation can be obtained by thresholding the 
vessel map, and enhancement can be achieved by pixel-wise 
multiplication with the input image. Due to the variability in the 
scale of vessels, the vessel map is constructed using a multi-scale 
scheme. Five scales of Gaussian are employed for each image, 
with σ = 1,2,3,4 and 5. Gamma-normalized derivatives are also 
used with γ = 0.5 as in [1]. The blobness and backgroundness 
parameters β and c are set to 0.5. The results are combined across 
the scales by the maximum rule [1], which is to use the maximum 
vesselness response across all scales.  

Several examples of tests on color images are shown in 
Figures 1(a)-4(a). The vessel maps are generated based on both the 
color-Hessian approach and the traditional grayscale-Hessian 
approach. For ease of comparison, all vessel maps are normalized 
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(a) (b) (c) 

  
(d) (e) (f) 

Figure 1. (a) Photo of a jellyfish [20] (b) Grayscale-based Hessian result in which the tentacles are not detected  due to approximate iso-
luminance. (c) Color-based Hessian result in which the tentacles are more clearly delineated. (d)-(f) Scaled up version of the top-left 
corners of (a)-(c) respectively. 

 
by scaling vesselness intensity to [0,1] and then scaled for better 
visualization.  

Due to the lack of ground truth segmentations paired with the 
available color image data, we are unable to quantify our results 
numerically. Nevertheless, the advantage of our method is 
qualitatively quite clear based on visual inspection of the 
segmented vessels. As can be seen by comparing Figures 1(c)-4(c) 
with Figure 1(b)-4(b),  the color Hessian achieves better results 
than the grayscale version in term of the vessel map. In the 
grayscale-derived vessel maps, there is low vesselness found for 
vessels that differ in color from the background, but are 
nonetheless iso-luminant to it. However, even in the regions where 
luminance of the vessel and background differ, the results of the 
color Hessian show higher vesselness contrast. Color is an 
important discriminative property of objects, and the results 
demonstrate that it provides sufficient extra information to 
distinguish between background and objects in cases where the 
traditional luminance-based method fails.  

Conclusion 
The Hessian matrix can be used to estimate curvature and so 

provides a good foundation for identifying interesting image 
features such as tubular vessels and blobs.  In generalizing the use 
of the Hessian from grayscale to color images, however, the 
problem that arises is the possible information loss caused by 
cancellation of derivatives in opposing directions from the separate 
color channels.  To overcome this problem, we employ the 
quaternion representation of color, which encodes an RGB color in 
a single quaternion number. Information loss is avoided by 
extracting the eigenvalues from the quaternion-valued Hessian 
matrix based via QSVD. The quaternion-based method 
demonstrates improved performance in term of the resulting vessel 
map, which is important for vessel segmentation and enhancement. 
Future work will include experiments with 4-channel data (higher 

dimensions are not possible since quaterions are 4-tuples), and for 
Hessian-based interest point/blob detection.  
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(a) (b) (c) 

Figure 2. (a) A two-photon fluorescence microscopy image of villi of the mouse small intestine [18]; (b)  Grayscale-based Hessian result in 
which the curvature measure around green contours is low because they are similar in intensity to the blue background; (c) Color-based 
Hessian result in which the green tubular structures are clearly delineated. 

 

   
(a) (b) (c) 

Figure 3. (a) Fluorescence and confocal microscopy photo of rat retina astrocytes and blood vessels[18]; (b) Grayscale-based Hessian 
result where the method fails to detect the dominant vessel across the center line of the image. (c) Color-based Hessian result. 

 

   
(a) (b) (c) 

Figure 4. (a) An example satellite image[19]; (b) Grayscale-based Hessian result in which the green vessel-like structure is missed. (c) 
Color-based Hessian result in which the green vessel-like structure is identified. 
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