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ABSTRACT
Quantification and visualization of anatomical shape vari-

ability in different populations is essential for diagnosis and
tracking progression of diseases. We present a new 3Dmedial-
based shape representation method capable of analysis and
visualization of 3D anatomy and demonstrate its ability to
quantify and highlight shape variability in an intuitive man-
ner. 3D shapes are represented via orientations and elonga-
tions of one or more medial sheets, along with thickness val-
ues encoding the distances to the shape surface. Two param-
eters traverse each medial sheet and are mapped to orienta-
tion, elongation, and thickness values; we call this map a me-
dial patch. Shape variability is decomposed intuitively into
bend, stretch, or bulge deformations, via operators acting on
the components of the medial patch. In a simple manner, the
location, extent, type, and amplitude of the deformation op-
erators can be specified to capture local and global intuitive
shape variability. We demonstrate the capabilities and intu-
itiveness of this approach through synthetic 3D shape defor-
mations, as well as deformations that capture the 3D shape of
an anatomical structure. We demonstrate the ability to high-
light regions containing specific types of intuitive changes in
anatomy.

1. INTRODUCTION

Neurological, cardiological, skeletal, and other pathologies
often correlate to shape deviations from the space of normal
shapes. Structural abnormality can also indicate increased
likelihood of future occurrence of diseases or injuries. Medi-
cal imaging is allowing exceptional views of internal anatomy
and providing an unprecedented opportunity for disease di-
agnosis/prediction, prevention, and treatment. Establishing
a concise relationship between pathology and 3D anatomical
shapes is therefore a desirable goal.
Shape representation is important for segmentation, recog-

nition, and interpretation of medical images [1]. Designing
a shape representation that encodes intuitive shape deforma-
tions and captures statistical shape variability, for both sim-
ple and complex geometry and topology, remains a challenge.
Many boundary-based deformable shape representations have
been previously proposed, (e.g. SPHARM [2], NURBS [3],
superquadrics [4], Wavelet-based [5]). Volume-based shape

representations have also been proposed, including those that
are based on finite element methods [6]. However, the ma-
jority of existing techniques are incapable of decomposing
shape variability into intuitive deformations, easily commu-
nicated to clinical experts, since their deformations are not
based on object-relative geometry. Medial axis-based shape
representations (MSRs) are emerging as a powerful alterna-
tive [7, 8, 9].
In this paper, we present a new MSR-inspired 3D shape

representation. It allows for analysis of 3D anatomical shapes,
where shape differences are decomposed into independent,
intuitive deformation types (bending, stretching, and thick-
ening). We represent the shape of a 3D object as a collection
of parts. The different parts are related by an undirected graph
encoding the object’s topology. To capture the object’s geom-
etry, each part is described using a medial sheet with thickness
values encoding the distances from the sheets to the object’s
surfaces. Two parameters traverse each medial sheet and are
mapped to the orientation, elongation, and thickness values,
which describe the shape of each sheet. Given the analogy
of this mapping to a patch in differential geometry and the
medial-based nature of our shape representation, we refer to
our technique asMedial Patches (MPs).
In section 2, we describe the shape representation and

methods for its computation. Section 3 demonstrates the high-
lighting of regions having specific types of intuitive changes
in anatomy, and in section 4 we give our conclusions.

2. METHOD

2.1. The medial patch shape representation

We represent the shape of a 3D object using a coarse-to-fine
approach through a collection of medial sheets, joined via an
undirected graph G(V, E) where each vertex V represents a
sheet, and each edge E represents a connection between two
sheets. Each medial sheet is parameterized on (i, j) 1 where
i, j ∈ N, and comprises a base medial curve sampled at base
medial nodes and several medial curves sampled at medial
nodes and attached to the base medial nodes (figure 1). As-

1Without loss of generality, we make the arbitrary choice that nodes where
j = 1 are base medial nodes. An O(n) operation is required to transform a
given shape to place the base medial nodes along i = 1 (and vice-versa).
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Fig. 1. Terminology and variables of MPs. Elliptic dashed
region scaled up in figure 2.
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Fig. 2. Detailed view of (a) longitudinal angle λ(i, j), lati-
tudinal angle δ(i, j) and elongation r(i, j), (b) the distances
above T+(i, j) / below T−(i, j) the medial sheet.

sociated with each of the medial nodes is a description of the
relative orientation and spacing between nodes, and thickness
values giving two surface nodes, which are point samples ly-
ing on the object’s surface. Medial sheets are joined via over-
loaded nodes which serve as medial nodes for one sheet and
as base medial nodes for another (figure 1).
A discrete patch2 is a map M : N

2 → R
n. We encode

each medial sheet using a MP of the form M : N
2 → R

5,
with medial sheet parameters (i, j) forming the map’s do-
main. The map’s range has five scalar components, three of
which encode relative positional information about the medial
nodes: (1) the elongation (distance), r(i, j), between neigh-
bouring nodes, (2) the longitudinal and (3) latitudinal angles,
λ(i, j) and δ(i, j) respectively, between neighbouring nodes
(figure 2(a)). Two additional thickness components, T+(i, j)
and T−(i, j), store the distance above and below the medial
sheet3, respectively, to the upper and lower parts of the sur-
face of the object, defining surface nodes (figure 2(b)).

2Based on the definition of a patch in differential geometry; a map M :
R

2 → R
n.

3T+(i, j) and T−(i, j) may be different, per our adoption of a position
of practicality over bijection (see section 2.2).

2.2. Computing a medial patch of a 3D object

In this section, we describe and give our rationale for our ap-
proach to computing the medial sheet for a given anatomical
structure. The decision of how to compute a MSR for a shape
depends on one’s position on a continuum of bijectivity ver-
sus practicality. At one end (bijectivity) sit skeletonization
approaches (e.g. [7]), where medial loci are defined as cen-
ters of inscribed spheres touching two or more surface points.
This yields a bijection between shapes and their MSRs. At the
other end (practicality), this bijection does not exist; medial
loci may be not truly medial. MSRs that ensure bijectivity
are known to be generally very sensitive to small changes at
object boundaries. Our representation does not force any po-
sition on this continuum. However, in this work we adopt a
position of practicality; we encode small, simple protrusions
and indentations of objects as changes to thickness values
rather than changes to the medial sheet itself. We represent
our shape with a sufficiently large number of medial sheets
to ensure that these indentations and protrusions can be de-
scribed by changes in thickness. Specifically, if a protrusion
is too complex to be described as an increase in thickness then
this warrants a new additional medial sheet to the graph.
The approach used to compute a MP representation of a

3D object is described in algorithm 1, and involves the defor-
mation of an initialized planar sheet according to the shape
of the object. Similarly, multiple connected planar sheets can
be initialized and deformed to fit to complex objects. The
rationale behind this approach is similar to that for the fixed
topology skeleton [10]; the topology of the anatomical struc-
ture is often known in advance, so spurious skeleton branches
can be avoided by fixing the topology of the skeleton.

Algorithm 1 Deforming a flat sheet to a medial sheet of a
binary object
Input: Binary volume V ; V (x, y, z) = 1, ∀(x, y, z) inside the object
Output: The 3D coordinates N(i, j) of a medial sheet and N+(i, j),

N−(i, j) of upper and lower implied surfaces of the input object
1: λ1, λ2, λ3, e1, e2, e3 ← Eigenvectors λi and eigenvalues ei resulting
from principal component analysis of {x, y, z | V (x, y, z) = 1}

2: N(i, j)←A uniform rectilinear grid of medial nodes lying on a medial
sheet with principal directions along λ1, λ2, and extents proportional to
e1, e2

3: repeat
4: for all nodes (i, j) in the medial sheet do
5:

−→
Q ← Normal vector to the medial sheet at (i, j)

6: Cast rays from N(i, j) along
−→
Q and −−→Q until they exit the ob-

ject. Record the two object exit points as surface nodesN+(i, j)
andN−(i, j)

7: N(i, j)←Midpoint of segment fromN+(i, j) toN−(i, j)
8: end for
9: until no change inN(i, j), N+(i, j), N−(i, j), ∀(i, j)

Given the 3D coordinates of nodes N(i, j) sampled from
(a) medial sheet(s) lying within a 3D object and correspond-
ing surface nodes N+(i, j) and N−(i, j) (e.g. from algo-
rithm 1), algorithm 2 computes the object’s medial represen-
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tation. At each MP domain element (i, j) we compute the
patch’s range: r(i, j), λ(i, j), δ(i, j), T−(i, j), and T+(i, j).

Algorithm 2 Computing a medial patch from medial and sur-
face nodes
Input: The 3D coordinates N(i, j) of a medial sheet and N+(i, j),

N−(i, j) of upper and lower implied surfaces of the object
Output: A medial patch: λ(i, j), δ(i, j), r(i, j), T−(i, j), T+(i, j)
1: for all nodes (i, j) in the medial sheet do
2: Φ(i, j)← Local coordinate system computed using algorithm 3
3: (x1, x2, x3) ← 3D coordinates N(i, j) transformed from global

coordinate system ΦG to Φ(i, j)

4: r(i, j)←
�

(x2
1 + x2

2 + x2
3)

5: λ(i, j)← tan−1( x1
−x2

)

6: δ(i, j)← cos−1( x3
r(i,j)

)

7: T+(i, j)← ‖N(i, j)−N+(i, j)‖
8: T−(i, j)← ‖N(i, j)−N−(i, j)‖
9: end for

We use algorithm 3 to construct4 a local Cartesian coordi-
nate system Φ(i, j) with originN(i, j) and orthonormal basis−→x1, −→x2, and −→x3 at each node (i, j). Using coordinate system
Φ(i, j), the spherical coordinates r(i, j), λ(i, j), and δ(i, j)
define N(i, j), as in figure 2(a). The model’s pose (figure 1)
is controlled by values λ(1, 1), δ(1, 1) and r(1, 1).

Algorithm 3 Computing a local Cartesian coordinate system
at a medial node
Input: Parameters (i, j), medial nodesN(m, n), ∀m = 1..i, n = 1..j
Output: The orthonormal Cartesian coordinate system Φ(i, j)
1: if i = 1 and j = 1 then {Base node}
2: Φ(i, j)← Global coordinate system ΦG; Stop
3: else if i > 1 and j = 1 then {Base medial nodes}
4: (i, j)← (i− 1, j)
5: else {Medial nodes}
6: (i, j)← (i, j − 1)
7: end if
8: if i = 1 then
9: N(i− 1, j)← (1, 0, 0)
10: end if
11: if j = 1 then
12: N(i, j − 1)← (0, 1, 0)
13: end if
14: −→x1 ←

−−−−−−−−−−−−−−−−→
(N(i, j)−N(i− 1, j))

15:
−→�x2 ←

−−−−−−−−−−−−−−−−→
(N(i, j)−N(i, j − 1))

16:
−−−−→�x2⊥x1 ←

−→�x2 − (−→x1
−→x1

T /−→x1
T−→x1)

−→�x2

{−−−−→�x2⊥x1 is
−→�x2’s normal component to −→x1, in the plane formed by −→x1

and
−→�x2}

17: −→x2 ← −−−−→�x2⊥x1/‖−−−−→�x2⊥x1‖ {Unit vector}
18: −→x1 ← −→x1/‖−→x1‖ {Unit vector}
19: −→x3 ← −→x1 ×−→x2

{−→x3 is the unit vector normal to −→x1 and −→x2 ensuring a right-handed
coordinate system}

20: Φ(i, j)← OriginN(i, j), orthonormal basis vectors −→x1,−→x2,−→x3

4In algorithm 3, we make an arbitrary yet consistent choice of basis, with-
out loss of generality: for nodes where i = 1 or j = 1, we are faced with
the problem of how to define the local frame of reference at N(i, j) since
N(0, j) or N(i, 0) are nonexistent. We replace N(0, j) with (1, 0, 0) and
N(i, 0) with (0, 1, 0).

2.3. Shape reconstruction from medial patches

Given a MP, we perform two reconstructions, each mapping
N

2 → R
3. The first maps each (i, j) to 3D coordinates of a

medial node. The second maps each (i, j) to the 3D coordi-
nates of the object surface above (N+) and below (N−) the
sheet. The reconstruction process is given in algorithm 4.

Algorithm 4 Shape reconstruction from medial patches
Input: A medial patch: λ(i, j), δ(i, j), r(i, j), T−(i, j), T+(i, j)
Output: The 3D coordinates N(i, j) of the medial sheet and N+(i, j),

N−(i, j) of upper and lower implied surfaces of the object
1: for all nodes (i, j) in the medial sheet do
2: Φ(i, j)← Local coordinate system computed using algorithm 3
3: x1 ← r(i, j) sin(λ(i, j)) sin(90◦ − δ(i, j))
4: x2 ← −(r(i, j) cos(λ(i, j)) sin(90◦ − δ(i, j)))
5: x3 ← r(i, j) cos(90◦ − δ(i, j))
6: N(i, j) ← 3D coordinates (x1, x2, x3) transformed from Φ(i, j)

to global coordinate system ΦG

7: end for
8: for all nodes (i, j) in the medial sheet do
9:

−→
Q ← Normal vector to the medial sheet at (i, j)

10: N+(i, j)← T+(i, j)
−→
Q

11: N−(i, j)← −T−(i, j)
−→
Q

12: end for

3. RESULTS

Figure 3 uses deformed synthetic slabs to illustrate the ability
of this shape representation to decompose shape variations
into intuitive components. Figure 4 illustrates the bending of
a single caudate nucleus, as well as the ability to highlight
intuitive deformations in local regions.

4. CONCLUSION

We presented a novel 3D shape representation based on me-
dial patches, which represent 3D objects as collections of
maps from N

2 to R
5. MPs capture intuitive aspects of indi-

vidual shapes, and differences between shapes, such as bend-
ing, elongation, and thickness, enabling useful visualizations
and quantifications, with different potential applications, e.g.
highlighting colon polyps. Bending and thickness values from
the patches also enable the straightforward calculation of more
traditional shape measures such as surface roughness, and
curvature. Future work includes providing a means for shape
correspondence establishment in the domains of the MPs, en-
abling deformation, location, and scale-specific statistical anal-
ysis of a set of shapes, as done previously in 2D [8]. Future
work also includes automatic fitting of MP representations to
non-binary data (segmentation), to be achieved by extending
our automatic sheet-fitting approach using energy minimiza-
tion and complex features rather than transitions of binary in-
tensities, as with Deformable Organisms [11].
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(a) (b)

(c) (d)

Fig. 3. (a) A bent slab with a protrusion, with only the bend-
ing component δ(i, i) highlighted. (b) Same as (a), with thick-
ness components (T+(i, j) + T−(i, j)) highlighted. (c),(d)
MP range components of bending and thickness, correspond-
ing to (a) and (b), rendered as grayscale images.
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