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Abstract. Energy functional minimization is a popular technique for
medical image segmentation.The segmentationmust be initialized,weights
for competing terms of an energy functional must be tuned, and the func-
tional minimized. There is a substantial amount of guesswork involved.
We reduce this guesswork by analytically determining the optimal weights
and minimizing a convex energy functional independent of the initializa-
tion. We demonstrate improved results over state of the art on a set of 470
clinical examples.

1 Introduction

Image segmentation is a key task in visual computing. For medical image anal-
ysis, segmentation is important for quantifying the progression of diseases and
quantifying anatomical variation. In such applications, a high degree of accuracy
is sought, as the anatomical variation itself can be small and thus consumed by
segmentation error. For this and other reasons, the automatic segmentation of
medical images remains a daunting task. Many segmentation approaches rely on
the minimization of objective functions, including several landmark papers: from
the seminal paper of Snakes for 2D segmentation [1] and other explicit models
[2] to implicit models [3,4], graph approaches [5,6], and variants thereof.

Objective function-based methods are commonly built using five essential
building blocks: (i) an objective function whose minima provide good segmen-
tations; (ii) an appropriate shape representation; (iii) a set of parameters in-
cluding weights to balance the competing terms of the energy functional; (iv) an
initialization; and (v) a method for minimization, whether it be local or global,
continuous or combinatorial.

Each of these common blocks is known to have certain challenges. In par-
ticular, the parameter setting, initialization, and minimization phases are well
known to be problematic. Often there are unanswered questions: what if a dif-
ferent initialization was used, what about a different minimizer, what if different
weights were used between competing terms of the energy functional? Hence,
erroneous segmentations cannot be directly attributed to the energy functional
or one of the many unknowns of the segmentation process. The goal is to reduce
and ultimately remove these points of uncertainty.
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Uncertainty with initializations and minimizers can be addressed by formulat-
ing problems as convex energy functionals over convex domains, or submodular
in the case of combinatorial approaches. Papers dealing with this issue are now
common ground for both continuous [7,8] and discrete [5,6] optimization, but
they all have uncertainty stemming from the free weights in their energy func-
tionals.

Uncertainty with energy functional weights can be addressed by determining
the optimal weights for each image to be segmented, else another set of weights
may exist that provides better results. Recently, we developed an analytical
expression describing the optimal functional weights [9]. Our method solves for
the optimal functional weights for a training set of image-segmentation pairs, and
then infers the optimal parameters for a novel image via geodesic interpolation
over the training set. Our results demonstrated the importance of not only using
the optimal weights for a functional, but how those weights vary from image to
image. However, the method was not without its drawbacks.

We build upon and extend our earlier work by addressing two key issues.
First, our previous work was done using non-convex functionals. There is un-
certainty that a different initialization or optimization process may have yielded
improved results. Instead, in this work, we focus on convex functionals, ensuring
global optima and thus removing uncertainty related to local minima and ini-
tializations. Second, our analytical expression for optimal parameters included
an implicit weighting between its two competing terms; a weighting which we
seek to address here. We remove the implicit weighting using a convex quadratic
formulation under a linear constraint, and thus remove the uncertainty implied
by it. Our lastest results show significantly improved accuracy.

Though we are focusing on continuous functionals, a related field of ap-
proaches has come up in the study of combinatorial problems. The first set
is based on recent advances in maximum margin estimation, wherein the param-
eters of the objective function are sought such that the highest scoring struc-
tures (in our case segmentations) are as close as possible to the ground truth
[10,11,12,13]. However, in addition to being limited to combinatorial objective
functions rather than continuous ones, these methods propose a fixed set of pa-
rameters for novel samples (in our case images), whereas we follow the direction
of [9] using geodesic interpolation to infer the optimal parameters on a per-image
basis. In other words, these works assume that a single set of parameters works
for an entire test set. As shown in [9], this is often not the case in image segmen-
tation, and greatly improved results can be obtained by adapting the parameters
to the individual images (as we do). The second related direction, was introduced
recently in [14]. Though this work is also restricted to combinatorial objective
functions, an optimal parameter is indeed sought on a per-image basis. Given a
parameter range, the method simultaneously solves the objective function for a
set of parameters that bound how the parameters influence the solution. Each
solution is then treated as a potential segmentation. They propose a number of
heuristics, including user intervention, to select the best segmentation from a set
of potential ones.
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In what follows we describe the theory behind our method (Sec. 2), how we
build convex functionals (Sec. refsec:energy), and how to analyticaly describe
the optimal weights of a functional (Sec. 2.2). We then detail how to apply our
method to novel images (Sec. refsec:methods) and validate our improvements
over [9] (Sec. 4). Finally, we discuss our results and future work (Sec. 4).

2 Theory: Notations and Uncertainty in Segmentation

In order to more formally explain where the uncertainty lies, and how it needs to
be addressed, we first give a more detailed view on the energy minimization based
segmentation process. We define a gray-level image I, and its corresponding
segmentation S. Then I= {I1, I2, ..., IN} and S= {S1, S2, ..., SN} are training
sets of images and their corresponding, correct segmentations.

The first step is the identification of the form of the energy functional. It may
be convex or non-convex, as can the shape space over which it is minimized. A
common general form is E(S, I,w) = w1 × internal(S) + w2 × external(S, I).
Notice the free parameter w = [w1, w2]. Depending on its value, minima of E
favor the internal energy, or the external energy.

The segmentation problem is to solve S∗ = arg min
S

E(S|I,w), which involves

choosing a w and, depending on the nature of the energy functional, may also
require training appearance and/or shape priors, and setting an initialization.
A gradient descent-based solver is typically used but combinatorial approaches
have also been explored for discretized versions of the problem [5]. Here we focus
on continuous problems, and thus assume a gradient descent solver.

When using gradient descent, non-convexity can be quite problematic. There
is no guarantee that another solution does not exist which better minimizes the
energy, and thus is potentially a better segmentation. Ideally both functional
and shape space are convex; guaranteeing globally optimal solutions.

Simply obtaining a global optima does not, however, guarantee a correct seg-
mentation in the general case. If not appropriately set, the weights w can cause
significant error. Optimizing the weights has been shown to have dramatic effects;
reducing error in large data sets by as much as 30% [9]. However, optimizing the
weights by hand for even a single image can be a long and tedious task, with no
real guarantee of obtaining the correct segmentation.

Instead of guessing the optimal weights, suppose we write a function γ(w|Ij , Sj)
evaluating how well weight w works for a given image-segmentation pair (Ij , Sj);
such that a parameter is deemed better when it causes S∗ to approach Sj , i.e. the
minimum of E to be the correct segmentation. Given Sj , we could then calculate
the ideal weights for a particular image Ij by solving w∗ = arg min

w
γ(w|Ij , Sj). It

is important that γ itself be convex or globally solvable in w. If γ was not glob-
ally solvable, uncertainty would remain in that another w∗ may better minimize
γ, and thus better segment the image. Similarly, γ can not contain free param-
eters, else those parameters would themselves introduce uncertainty; as was the
case in [9].
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2.1 Convex Energy Functionals

We make use of recent research into convex functionals for image segmenta-
tion, specifically that of Cremers et al. where a convex energy functional E
is minimized over a convex shape space represented as probability maps, i.e.
S(x) ∈ [0, 1] for all points x in the image domain Ω, to yield a convex segmen-
tation problem [15]. A shape model is then constructed via principal component
analysis (PCA) on a set of training shapes forming a k-dimensional approxima-
tion to the shape space, with α1, ..., αk eigen coefficients, a mean shape S̄, and

eigenvectors ψ1, ..., ψk. Shapes can now be reconstructed as S = S̄ +
k∑

i=1

αiψi.

Writing S in terms of the vector of shape parameters α = {αi}k
i=1, convex E

can be written as a sum of convex energy terms:

E(α|I = Ij ,w = ŵ) =
∫

Ω

ŵ1J1(α|Ij) + ...+ ŵnJn(α|Ij)dx (1)

for a fixed image Ij and arbitrary, fixed weights ŵ, where Ji is a convex energy
term and w = [w1, ..., wn] with wi ∈ [0, 1] are weights. Consequently, E is a
convex functional since the positively weighted sum of a set of convex terms is
itself convex. For proofs of convexity and more details see [15].

Minimizing E optimally can then be performed via gradient descent on α
using derivative: Eα(α|I = Ij ,w = ŵ) = ŵ1T1(α|Ij) + ... + ŵnTn(α|Ij) where
Eα denotes the derivative of E with respect to α, and Ti is the derivative of Jith
term. However, since ŵ is arbitrary nothing can be said about its optimality for
the particular image Ij .

2.2 Optimal Energy Functional Weights

For each (Ij , Sj), Ij ∈ I and Sj ∈ S, the task is to find the optimal values for
the free weights w(Ij). This section explores the notion of ‘optimal’.

One computationally intractable approach for finding w∗ is to try all possible
weight combinations and run the segmentation method then select the weights
with the least segmentation error. A better approach, as outlined in [9], is to find
the weights w∗ that minimize the magnitude of the derivative, in our case Eα, of
the energy functional at the correct segmentation αj (i.e. αj = [ψ1ψ2...ψk]+(Sj−
S̄))1. Doing so encourages αj to be a minimum of E (i.e. Eα(αj |Ij ,w∗) = 0).
Since Eα is in our case a vector of length k and wi(Ij) a scalar function, we
measure its magnitude as

∣
∣Eα(w|αj , Ij)

∣
∣2. McIntosh and Hamarneh go further

to minimize |Eα(w|α, Ij)|2 for α = αj while maximizing it for all other possible
shapes (in a direction toward the optimal solution). Adopting their approach,
for the time being, but with the new convex setup, we proceed as follows.

For a given shape αi, a vector (αi − αj) in R
k represents the direction towards

αj . Since Eα(w|αi, Ij) is the vector in R
k dictating in what direction, and

1 We assume the chosen eigenvectors explain 99% of the variance and thus the error
incured by representing S as α is negligible.
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Fig. 1. Varying the shape of energy functionals. Left: Various functionals that show
an increasing extent to which the gradient at neighboring shapes points towards the
correct segmentation, represented by S = 0. Right: Various functionals that show how
a set of neighboring shapes can also become minima, a degenerate case.

by what amount, the solution will change at the point αi, a normalized dot-
product (projection-like approach) will measure how much in the right direction
Eα(w|αi, Ij) points.

So for an energy functional with a form like those in (1), and following [9], for
now, we define γ(w|Ij , Sj) as

γ(w) =

(
∣
∣Eα(w|αj , Ij)

∣
∣2 − λ

∑

i∈NS

FNS(αj ,αi)
Eα(w|αi, Ij) · (αi − αj)

|αi − αj |

)

(2)

where NS denotes a set of nearby (or similar) shapes in the domain of E, and
FNS is used to weight closer segmentations according to their proximity. The
neighborhood NS is used instead of the entire shape space to reduce computa-
tional complexity. The second term, dubbed the neighborhood term, is negative
and |Eα(w|αi, Ij)| is omitted from the normalized dot-product to reward large
steps in the correct direction. Solving w∗(Ij) = arg min

w
γ(w|Ij , Sj), yields the

optimal weights for image Ij .
However, notice that there is a weighting λ between competing terms of (2),

which was implicit in [9], i.e. was assumed equal to unity and not addressed.
With two competing terms, a balance must be struck between: (i) the degree
by which αj is a minimum of E; and (ii) the degree by which the derivative at
neighboring points in the shape space points towards αj (Fig. 1-left). Make λ
too small and αj might be a minimum, but so might the entire neighborhood
(Fig. 1-right). Make λ too large and the neighborhood will point in the right
direction, but αj might no longer be a minimum.

To rectify this problem, we make the following observation: when the energy
functional E is convex our only concern is making αj as much a minimum as
possible, while avoiding the degenerate case that the neighboring points are
minima (Fig. 1-right). As a result we can replace the neighborhood term by a
constraint rather than a cost term since the degree to which the neighbors point
towards αj does not change whether or not Eα(w|αj , Ij) = 0 (i.e. we must avoid
forcing the gradient in the neighborhood to point at αj at the cost of making
Eα(w|αj , Ij) �= 0). Thus instead of (2) we re-define w∗(Ij) as
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Fig. 2. Overview of our proposed method

w∗ = argmin
w

γ(w) = argmin
w

∣
∣Eα(w|αj , Ij)

∣
∣2

s.t.
∑

i∈NS

FNS(αj ,αi)Eα(w|αi, Ij) · (αj−αi)
|αj−αi| ≥ 0

(3)

The result is a convex function in w under a linear constraint, since the first
term in (2) has been shown to be a convex quadratic [9] and the second term
linear. A convex function under a linear constraint can be solved via convex
optimization, and thus the optimal w(Ij) is guaranteed.

3 Method: Segmenting Novel Images

Given our set of training image-segmentation pairs we will have N samples of
w∗(I), from which we can interpolate to find values at new points (i.e. novel
images). In order to interpolate, we need a metric for measuring distances be-
tween images2. The set of images with the shortest distances constitutes the
neighboring images, NI , and NS are their corresponding correct segmentations.

We assume I is smooth over its domain, the space of a particular class of
images (e.g. MRI brain scans of normal adults), and that the mapping from im-
ages to segmentations is smooth. In other words, we assume that similar images
have similar parameters, and similar segmentations. As such, we use a normal-
ized Gaussian kernel, defined over the image distances, to interpolate both the
parameters and initializations. For shape and appearance priors, we limit the
training data to NI and NS, since we are more confident that the correct shape
and appearance information is similar to the training data lying in those neigh-
borhoods. The process is summarized in figure 2.

Manifold learning methods are a special class of nonlinear dimensionality re-
duction techniques that enable the calculation of geodesic distances between
data points. We make use of these techniques to calculate distances between
both images and segmentations. Distances between neighboring segmentations
allow us to define
2 The choice of metric is beyond the scope of this paper (Sec. 5).
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FNS(Sj , Si) = 1 − g (Si, Sj)∑

t∈NS

g (St, Sj)
(4)

where g(Si, Sj) is the learned geodesic distance between shape Si and shape Sj .
The function FNS(Sj , Si) then acts as a weighting for the given neighborhood
NS, normalized to sum to one (i.e. the weight decreases as a function of distance
from the center of the neighborhood). Here we use the geodesic distance between
shapes, as opposed to their linear distance in the PCA subspace, for greater
accuracy. The linear shape space is well suited for our shape representation
because it forms the basis for a convex optimization problem (as previously
noted). In essence, we assume an underlying non-linear shape space exists, but
use a higher dimensional linear space to represent it. This of course, allows
non-valid shapes to be represented, but it brings the benefit a convex energy
functional, and with a good energy functional those non-valid shapes will not be
minima anyway (as our results show).

Though numerous points of uncertainty have been addressed by our method,
there are a few remaining free parameters: (i) k, the dimensionality of the PCA
shape space used for our shape representation; (ii) the dimensionality of the
shape manifold; (iii) the dimensionality of the image manifold; (iv) the input
image-distance metric used as input to the manifold learning algorithm; (v) the
manifold learning algorithm to be used; and finally (vi) the interpolation function
used to determine parameters for novel images, as a function of their distance
to similar images. As these choices are somewhat application dependent, we
include a specification of their values in the experiment section. We also include
a discussion of the implications of these parameters in section 5.

4 Experiments

We validate our method on a set of 470 256 × 256 affine registered mid-sagittal
MR images, with corresponding expert-segmented corpora callosa (CC). Our
energy functional takes the form:

E(α) =
∫

Ω

(w1(I)f(x)S(x) + w2(I)g(x)(1 − S(x))

+w3(I)h(x) |∇S(x)|) dx+ w4(I)αTΣ−1α
(5)

where f = −log(Pobj(I)), g = −log(Pbk(I)), for object and background his-
tograms Pobj , Pbk, h = 1

1+|∇I| , and Σ−1 characterizes the allowable shape distri-
bution (see [15] for details).

To learn the distances, we used a MATLAB implementation of K-ISOMAP
[16] from http://isomap.stanford.edu/, with Euclidean distance between images
as the input distance matrix. As this paper is about the application of optimal
parameters to segmentation, issues related to learning the manifold will not be
addressed in this work. For K-ISOMAP we set K = 10, and reduce the image
space to a 5-manifold; chosen as the elbow of the scree plot. One caveat with
using ISOMAP is that it does not directly extend to novel samples. Though
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Fig. 3. CC segmentation results. (Left) Error plot where Mx1 is the maximum mea-
sured value for ε. (Right) Segmentations demonstrating the full range of error.

out-of-sample extensions for ISOMAP have been published, for simplicity we
choose to simply re-run ISOMAP to include the novel image, as this only takes
a few seconds. For PCA on the shape space we set k = 10; the elbow of the
corresponding scree plot.

Firstly, to show that eq. (3) can balance an ideal energy functional (one for
which the minimum can be positioned exactly at the correct segmentation using
the optimal weights) we calculate the error of energy functional (5) plus a fifth
term whose unique global minimum is always the correct segmentation for the
given image (i.e. we gave the functional weights w the power to achieve 100%
accuracy by adding a rigged, strictly convex term). We measure the error using a
modified Dice metric: ε = Area(A∪G−A∩G)/Area(G), where A and G are the
binary automatic segmentation and the ground truth, respectively. Using this
rigged term, we obtained ε = 0 for all 470 images, validating that our method
can achieve the full potential of a given functional.

To compare to the original weight optimization equation (eq. (2)), as originally
presented in [9], we performed validation on the set of 470 images using energy
functional (5). For each image, the optimal parameters are learned directly, using
the ground truth segmentation, rather than interpolation from the manifold.
Doing so isolates the error induced by the weights, not the interpolation method
or the ability to locate the position of novel images on the manifold. Using eq.
(2) we obtained an error of 0.1201 vs 0.1099 with eq. (3), a clear improvement.

To validate our segmentation method as it pertains to novel data, we perform
leave-one-out validation on the set of 470 images using energy functional (5).
Under error metric ε, we found the average error to be 0.13, improving over the
average error of 0.16 reported in [9]. Our results are summarized in Fig. 3. The
figure shows the percentage of images with ε ≤ the specified value on the x-axis.
So, for example, with our proposed method approximately 65% of the images
have ε ≤ 0.2 as opposed to only 44% using the method proposed in [9]. If an
error of 0.2 was the cut off for the segmentation method to be clincially useful,
our method would have succesfully segmented an additional 21% of the data, or
about 100 images more than [9].
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5 Discussion

Our results demonstrate our method’s ability to optimize the weights for convex
energy functionals. In doing so, we have addressed a few key areas of uncertainty
typically found in objective function based segmentation methods. Specifically,
our method does not suffer from uncertainty with local minima, initializations,
or hand-tuned parameters. However, new questions remain: Was the optimal
manifold learned? Is this the best way to describe the optimal weights? And
is this the best interpolation function for novel images? As already shown in
[9], even with the inherit manifold uncertainty, this technique of analytically
describing the optimal weights is better than the alternative (hand-tuning the
weights, and/or fixing the weights as constant values over the set of application
images).

The difference δε = 0.02 between what our method achieved in practice (ε =
0.13) and the error using weights calculated directly from the ground truth
segmentations, (ε = 0.1099), is due to our localization of novel images on the
manifold and the interpolation over w∗(I). An important area of future work
is thus to lower this difference by using better manifold learning techniques.
Improved image distance metrics [17] may also work, as they can simplify the
learning problem.

Finally, we have provided two improvements over [9]: we removed the un-
certainty with local minima and initializations; and we improved their weight
optimization equation by removing its implicit weight. We demonstrated how
our proposed weight optimization equation yields improved weights, and that
our method has a significantly lower error overall. In the end, we were able to
segment an additional 100 images under a reasonable cutoff, which is an impor-
tant improvement in a clinical setting.
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