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Abstract. A new methodology for three-dimensional (3D) non-linear
registration of articulate objects is presented. This approach is described
in the context of a program to screen for mutant mouse phenotypes based
on high resolution MR images of whole animals. This automatic screening
process requires statistical definition of the normal (non-mutant) mouse
anatomy and its variation. The registration algorithm is designed to re-
move postural differences between mice and thus enable meaningful com-
parisons between images. The main focus of our approach is anatomical
content and its preservation under deformations. Prior knowledge guides
the registration through an evolutionary process based on a hierarchical
tree of mouse anatomy.

1 Introduction

The comprehensive study of the biological functions of genes has lead a num-
ber of centers around the world to start large scale mouse mutagenesis projects
(Jackson Laboratory, Mouse Genome Centre at Harwell, RIKEN Genomics Sci-
ences Center, to name the few). At CMHD, The Centre For Modeling Human
Disease at Mount Sinai Hospital in Toronto, a genome-wide random mutagene-
sis is used for discovering new genes and creating new mouse models of human
diseases. A set of primary physiological and behavioral screens is designed to
parse the high throughput of mice and identify those with unusual phenotypes.
Most of the primary test are designed to screen for human-like diseases and are
tissue or organ specific (for example, heart rate, blood chemistry, glucose toler-
ance test, vision and hearing). High resolution, whole body MR imaging is being
added to the screening process to help identify outliers in gross morphology.
MR images enable a thorough search for unusual phenomena regarding sizes,
shapes and textures of organs and tissues. The difficulties in assessing images
lies in: a) large image size (about 512x512x2048 isotropic voxels at 60 microns)
and b) inter and intra subject postural differences hindering comparative image
navigation. When these difficulties are combined with a high throughput, having
radiologists with expertise in mouse anatomy perform image assessment becomes
impractical. Instead, there is a clear need for the development of computer aided
procedures that can help in phenotyping mice. This area of research is quite new
and unexplored.
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By contrast, medical images in humans have a long history. Current com-
puterized medical image analysis is largely driven by clinical applications and
can be described as a collection of mostly disjoint knowledge bases: typically,
medical images capture a specific part of the human body and image process-
ing techniques are focused in the same way. In particular, registration comes in
many different flavors: registration of human brains into single coordinate space,
elastic intrasubject registration of pre and post contrast breast images, rigid or
non-rigid template driven registration for surgical planning, surface based atlas
matching etc. With the use of whole body imaging systems comes a need for
whole body algorithms. In this sense, efforts in developing whole mouse body
algorithms will have wider impact.

Numerous automatic and semi-automatic methods for non-rigid registration
have been developed and successfully applied to medical images. Non-rigid regis-
tration of human brain images, for example, has been in a focus of many studies.
An excellent review of brain warping algorithms is given in [1]. Another excel-
lent review of various registration techniques is given in [4]. Existing registration
methods typically require a considerable number of image specific preprocess-
ing steps. For example, intensity-based algorithms require precise masks outlin-
ing structures of interest, while model-based algorithms require feature extrac-
tion (e.g., curves or polygons are often used for modeling important anatomical
structures). The preprocessing steps are often performed using manual or semi-
automatic procedures.

In the context of MRI based mouse phenotyping we need to formulate a
knowledge of normal (non-mutant), strain specific mouse anatomy and its modes
of variation. As a first step toward this goal we propose a method for 3D non-
rigid registration which enables uniformly approximate correspondence between
the same anatomical structures in inter subject comparisons. In the most gen-
eral setting this could be an intractable problem. In our case, however, we work
with a strictly controlled experiment that cannot be done in humans: all sub-
jects are taken from the same inbred strain, same sex and same age. Uniform
genetic background guarantees small phenotypical variations (for example, see
The Jackson Laboratory Genome database).

The underlying physical deformation model for the whole mouse body is re-
markably complex and cannot be treated in a uniform way. For example, head
position is reasonably well modeled by affine transformations, while inner, some-
what amorphous organs like the liver require elastic or free-form deformations.
Using elastic or spline based matching algorithm on the entire body would lead
to physically implausible results. An additional complication comes from in-
testines with their complicated, highly variable geometry, even across a single
strain. They are also susceptible to many extrinsic factors due to digestion and
metabolism. Registering intestines themselves is not only impractical, but their
richness with features can be misleading to any registration algorithm.

Drawing the line between extrinsic (insignificant) and intrinsic (significant)
differences has been addressed in the context of human brain atlases [1]. Most
widely accepted rules state that any higher order deformations, following the
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initial linear alignment, are anatomically significant. In the context of the entire
mouse body, it is much harder to define a similar rule. On one hand, removal of
extrinsic (postural) differences clearly requires non-linear deformations. On the
other hand, highly-nonlinear transformations are likely to erase anatomically sig-
nificant variations. Therefore deformations must be constrained. The challenge
is in finding the right balance between these opposing requirements.

In view of the above considerations, we propose an organ or a region of in-
terest (ROI) based approach to mouse anatomy. In other words, we consider
mouse body as a collection of ROI’s so that a class of piecewise affine transfor-
mations provides means for the removal of extrinsic differences. In this work, we
introduce a fully automatic, hierarchical, anatomically guided, piecewise affine
method for 3D registration of mouse images. The main focus of our approach is
anatomical content and its preservation under deformations. Prior anatomical
knowledge, which is necessary for this goal, is encoded in a single image as a
reference resource. Deformation fields produced by the algorithm enable trans-
fer of anatomical knowledge to all other images. This type of registration has
many possible applications. Registration based segmentation, though somewhat
inaccurate due to the limitations of locally affine transformations, can provide a
starting point for more sophisticated segmentations of specific organs. Another
application will be in enabling quick ROI browsing of images. For example, if a
researcher is interested in mouse heart, then its approximate location and seg-
mentation will be available from the database which records images together
with their corresponding deformation fields produced by the algorithm. Further-
more, all mouse hearts form the database could be resampled so that they live
in the same coordinate space, which in turn enables easy simultaneous viewing
and comparison.

2 Registration Method

2.1 Standard Coordinate Space And Labeling

We select an image of a representative member of the population, and we refer
to it as the reference image. The reference image is considered as the target for
all registrations, i.e., images of all other members of population are registered
into the coordinate space of the reference image.

Given an arbitrary image from the mouse population, which we refer to as
a sample image, we must describe a transformation which brings it into align-
ment with the reference image. The alignment must ensure correspondence be-
tween anatomical structures, e.g., the 5-th vertebra of the sample mouse must be
aligned with the 5-th vertebra of the reference mouse. This is an important point:
simple evaluation of some similarity function based on image intensities and/or
features without awareness of the underlying anatomy is not sufficient. For this
reason prior anatomical knowledge about the reference image is obtained first
and subsequently used for guiding the registration process. Anatomical knowl-
edge about the sample image gradually emerges and improves as the registration
process evolves.
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Prior anatomical knowledge is encoded via manual or semi-automatic label-
ing of the entire reference image. More precisely, each voxel in the reference image
is assigned to one of a finite number of anatomical labels or to the background.
The labels are defined so that they represent distinct structures of similar vol-
ume (e.g, one label for each vertebra). In cases when neighboring structures can
assume independent positions (e.g., femur and pelvis) particular care is taken in
the delineation along their boundary. As mentioned earlier, intestines are best
avoided in the registration, so all voxels in this region are assigned to the back-
ground. The parcelation of the reference mouse thus obtained is considered to
be on the finest scale, with the largest number of labels. The next subsection
explains how other, coarser parcelations are derived in a hierarchical manner.

2.2 Hierarchical Anatomical Tree

Starting from the finest scale labeling we build a hierarchical tree based on a
“part-of” concept. The tree consists of labelings Lo, L1,..., Ly which increase in
discriminatory power. The finest scale labeling, Ly, is the manual one, described
above. Its parent labeling, Ly _1, is obtained by simply merging together labels of
Ly . For example, if L has separate labels for each of the heart chambers (total
of 4 labels), then Ly_; may have only two labels: the two ventricles are merged
into one label and the two atriums are merged into another. As a result, Ly _1 is
a coarser labeling i.e., it has fewer labels but they encompass larger volumes. The
“part-of” hierarchy is clear: labels from Ly are children of their parent labels
from Ly_;. The next coarser labeling Ly_» is obtained by merging together
labels of Ly_; and so on, until we arrive at the coarsest labeling Ly which
consists of a single label encompassing the whole reference mouse body. Fig. 1
illustrates the concept of hierarchy. The tree enables a hierarchical piecewise
affine approach to the registration, as we explain next.

2.3 Hierarchical Registration

The registration is designed as an evolutionary process following the descent
down the hierarchical tree. It starts with the alignment of the single label of Lg
and it ends with the piecewise alignment corresponding to the finest labeling
Ly . The transformations produced in the process are piecewise affine in nature
(where pieces correspond to labels) and are expressed as vector fields.

We begin with the affine alignment of the single label (the whole mouse body)
of Ly to the sample image. This step accounts for global rotations, translations,
shears and scalings. Next, we descend to the next hierarchical level, L;. The
labels of L; are independently aligned with the sample image, again using an
affine transformation model. The transformation of the single parent label of Ly
obtained in the previous step is used to initialize all L; label alignments. Once
labels of L; have been aligned, we proceed to the next level, Lo, in a similar
fashion: the initial transformations for Lo labels are set from the transforma-
tions of their L; parent labels. The process continues until the finest labeling
Ly is reached.
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Fig. 1. Hierarchy of labelings Lo, L1,..., Ln. Arrows represent parent — child relation-
ship based on a “part-of” concept.

Label specific transformations of Ly are gathered to form a vector field, Vi:
for each voxel in the reference image, we apply the transformation of its Ly
label to calculate the corresponding point in the sample image. The difference
between the two spatial coordinates is encoded as a 3D displacement vector (see
fig:vectorfield).

Having in mind that the purpose is to establish a general anatomical corre-
spondence for ROI’ based comparisons, we measure the success of the registra-
tion accordingly: for each label of Ly, we compare the corresponding ROI’s in
the reference image and the Vy-transformed sample image respectively; if visual
inspection confirms that the two ROI’s encompass the same anatomical struc-
ture, then the registration is considered a success. Regularization of the final
transform is subject of our future work.

3 Implementation

We have implemented the registration algorithm in view of its future applica-
tions in atlas development and phenotypical screening. The implementation is
guided by the following assumptions: (i) all images are acquired with the same
MR sequence, (ii) the phenotypical variation between subjects is small and (iii)
postural differences are moderate (mice are positioned on platforms defining the
general position of the head and limbs).

We have chosen the affine alignment of AIR5.2.2 ([5]) as our core alignment
algorithm for its computational efficiency and robustness. With the same imag-
ing modality assumption, we have chosen the scaled least square difference as
the similarity function.

Given label X at level L;, implied is a corresponding ROI in the reference
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Fig. 2. Final displacement field Vx depicted with two cross-sections for reference.
Shown is regular grid of points in the reference space (blue dots) with displacement
vectors connecting them with their corresponding points in the sample space (yellow
dots)

image. In order to align this ROI with the corresponding region in the sample
image, we set up an alignment protocol in a fashion similar to [3]. Assume that
label Y of L;_; is the parent label of X and that Ty is the transformation cor-
responding to label Y, found previously. In order to find Tx, we use Ty in two
ways: (i) as an initialization for T'x and (ii) to define an ROI (via a mask) in the
sample image which approximately corresponds to the X-defined ROI of the ref-
erence image. Because of the postural differences, this mask may not include all
of the required anatomy. Therefore, we dilate this approximate mask by number
of voxels appropriate for the level of confidence at this stage (Fig. 3). Effectively,
this puts us in a standard registration framework: target image and target mask
vs. source image and source mask. To find an alignment, we follow a protocol
(similar to [3]) which specifies successive use of smoothed and/or edge detected
versions of images. The protocol also specifies details of pyramidal sampling and
the number of iterations used in each succession.

The independence of individual label alignments on the same hierarchical
level enables parallelized implementation. We also have gained additional speed
through the use of downsampled images in the first 3 levels.

4 Results

We have evaluated the performance of the algorithm in a synthetic experiment.
As a reference image we selected a full mouse body MR image (1.5T Signa, mag-
nevist profused, 3d spin-echo TR/TE = 100ms/6.552 ms, 90 flip, 1024x256x256
acquisition matrix, 102.4 x 25.6 x 25.6 mm fov). From this image we created a
second, synthetic image to be used as the sample image. We picked 14 landmarks
in the reference image and displaced them arbitrarily in 3D space. The average
magnitude of the landmark displacement vectors was 1.8mm (approx. 16 voxels).
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Masks defining head (red),
upper body (green) and lower
body (blue) ROI's in the
reference image

Corresponding approximate
masks in the sample image are
dilated to ensure inclusion of the
true anatomy

Fig. 3. Example: labeling L; consists of 3 labels. Corresponding approximate masks
in the sample image are dilated by a fixed, level specific amount

Based on the landmark displacements, we next transformed the entire reference
image using thin-plate splines as in [2]. To create a more realistic scenario, we
added 9% gaussian noise (standard deviation of noise = 9% of mean signal in-
tensity) to the deformed image and the result was used as a sample image. We
manualy created 66 labels on the reference image as the finest scale labeling, and
from it a hierarchical tree with 5 levels. On each of the registration levels, we
used the same protocol for all labels. For different levels, however, the protocols
were different. For example, L; was composed of 3 labels: head, upper body and
lower body. For this level we first downsampled both images by a factor of 3 in
each dimension. These images were then filtered in 3 different ways to enable
a multi-scale/multi-resolution registration. Further details of the protocol are
given in Table 1.

Table 1. Details of L; registration protocol. Sampling schedule refers to subsampling
of images using a regular grid with nodal distance given in mm’s. If two sampling
distances are given, then registration was done in two steps, first using the coarser
sampling, followed by the finer one

Filter (kernel width) Sampling (mm) Dilation (mm)
17.25mm gaussian blur 10.35, 6.9 69
6.9mm gaussian blur 10.35, 6.9 51
6.9mm gaussian blur on edge-detected images 6.9 51
none 6.9 51

To asses the accuracy of the registration we created a regular grid of points
within the labeled region, totaling to 24042 points. The true displacements of
the grid points, produced by the thin plate transformation, were compared to
the displacements prescribed by the final deformation field V5. Average error,
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measured by the distance between true and recovered grid point displacements
was 0.08mm (< 1 voxel), maximal error was 0.7mm (approx. 6 voxels) and
standard deviation of the error was 0.0005mm. With exclusion of a tiny region
near the edge of the mouse body, agreement was of subvoxel quality. The quality
of agreement is illustrated in Fig. 4.

The algorithm executed in less than 1 hour using 16 800MHz processors.
Given that the images were 256x256x1204 voxels in size, the achieved speed was
satisfactory.

Fig. 4. Registration effect on a single vertebra. Green surface shows the reference
vertebra. Purple surface represents the same vertebra deformed by the synthetic trans-
formation while the transparent surface represents its deformation under the recovered
transformation (the transparent surface is dilated by one voxel to enhance visual per-
ception of the agreement)
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