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Abstract. Updating segmentation results in real-time based on repeated user in-
put is a reliable way to guarantee accuracy, paramount in medical imaging ap-
plications, while making efficient use of an expert’s time. The random walker
algorithm with priors is a robust method able to find a globally optimal proba-
bilistic segmentation with an intuitive method for user input. However, like many
other segmentation algorithms, it can be too slow for real-time user interaction.
We propose a speedup to this popular algorithm based on offline precomputation,
taking advantage of the time images are stored on servers prior to an analysis
session. Our results demonstrate the benefits of our approach. For example, the
segmentations found by the original random walker and by our new precomputa-
tion method for a given 3D image have a Dice’s similarity coefficient of 0.975,
yet our method runs in 1/25th of the time.

1 Introduction

Segmentation is a crucial task in medical imaging. Manual segmentation by an expert is
accurate, but is also very time consuming, while fully automatic and accurate segmenta-
tion techniques are not yet a reality, thus semi-automatic techniques become a necessity.
While many semi-automatic techniques assume only user initialization, repeated user
interaction is necessary to guarantee the accuracy required for medical imaging. There-
fore, it is critical to speed up these techniques, especially in 3D, in order to minimize
the time spent waiting between a user inputing information and seeing the results [1,2].

A full survey of semi-automatic algorithms is beyond the scope of this work [3, 4].
At a high level, semi-automatic algorithms can be divided into several classes. One class
involves the specification of an approximate boundary, which evolves towards the cor-
rect segmentation by minimizing a cost function derived from shape priors and image
information [5, 6]. Another class of algorithms requires the user to specify sequential
points on or near the boundary, and then the boundary is filled in between these points
using a minimal path approach [7, 8]. A third class of algorithms asks the user to pro-
vide seeds, or pixels within specific regions, and then uses these seeds as a basis for the
segmentation [9, 10].

An example of the last class of algorithms is the seeded random walker (RW SD)
[10], which is a graph-based approach to image segmentation that, along with its ex-
tensions, has garnered hundreds of citations in only a few years. It boasts many ad-
vantages, including weak boundary detection, robustness to noise, trivial generalization
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to simultaneous multi-region and 3D segmentations, a globally optimal solution en-
suring repeatability, a probabilistic segmentation that can be very useful in directing
a user to areas of uncertainty, and the straightforward user input method of providing
seed pixels - all important features in medical imaging. On the downside, once seeds
are given, RW SD computes the segmentation by solving a large system of equations,
which can be slow. In [1], this problem is alleviated by introducing RW with precom-
putation (RW PREC). Since medical images usually exist “offline” on servers for some
time before they are segmented, some precomputation can be done before user input
that allows a fast approximation to the segmentation once seeds are given, or “online”.
The speedup RW PREC provides allows for user interaction with RW SD in real-time.

Unfortunately, RW SD has some limitations, specifically the segmentation is cal-
culated based only on localized image data and disconnected regions must be seeded
individually. These problems are addressed in [11], where regional intensity priors are
introduced into the formulation. The priors result in more accurate segmentations and
the ability to segment disjoint regions easily. However, in RW with priors (RW PR),
the image graph is not completely known offline, since priors are usually derived from
the seeds and precomputation must be performed before seeds are given. This obsoletes
the methods introduced in [1], which require the graph to be known. An algorithm with
the robustness of RW PR and the online speedup of RW PREC would be a very useful
interactive segmentation tool.

In this paper, we make the following contributions. First, starting with the random
walker equations from [11], we derive an offline precomputation and an online approx-
imation that allows for a significant online speedup that can be used in conjunction with
priors. Secondly, we derive some additional precomputations that are performed offline
to further speed up the online segmentation. Combining the robustness of RW PR and
the online speedup of RW PREC, we create a useful interactive segmentation tool ap-
plicable to a more general class of problems than RW PREC. Code demonstrating our
method is available from http://mial.cs.sfu.ca.

2 Methods: Random Walker Improvements

We begin by giving a brief review of existing RW algorithms for later reference. In the
following derivations, we consider binary segmentations, but we note that our methods
extend trivially to multiple labels, just as all previous RW algorithms discussed do.
RW SD [10] constructs a graph and then defines L as the graph’s Laplacian matrix and
x as a vector of the probabilities that each node belongs to the object being segmented.
We defineN , S, U = N−S >> S as the numbers of nodes in the graph, seeded nodes,
and unseeded nodes, respectively. In RW PR [11], λ is introduced as a vector of the
prior probabilities for each node, weighted by a scalar γ. In RW PREC [1], the first K
eigenvalue/eigenvector pairs of L are found and stored in matrics Λ and Q respectively,
so L ≈ QΛQT . These are used to construct a pseudo-inverse for L, E = QΛ−1QT .
For all three algorithms, all of the variables involved are expressed in terms of their
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components corresponding to seeded (S) and unseeded (U ) nodes:

L =

[
LS B
BT LU

]
, x =

[
xS
xU

]
, E =

[
ES R
RT EU

]
, Lx = f =

[
fS
fU

]
, g =

[
gS
gU

]
,

(1)

where g is a constant eigenvector corresponding to the zero eigenvalue of L.
In RW PR, xU , the vector of RW probabilities for the unlabeled pixels, is obtained

by solving a U × U system of equations (with I defined as the identity matrix):

(LU + γIU )xU = −BTxS + γλ , (2)

where γ = 0 gives RW SD. In RW PREC, several equations of size S × S are given
whose solutions can be used to approximate xU in the case that γ = 0. This method [1]
is reviewed in [12]. When priors are added to the RW formulation (γ > 0), the graph is
no longer known offline, and this precomputation method is rendered useless.

2.1 Precomputation with Priors

Following [1], our goal is to derive a method for using offline precomputation to speed
up the online computation for the more general RW PR, where the image graph is al-
tered after seeds are given. We define L and x as in RW PR [11]. Following preliminary
steps similar to RW PREC, we derive

(IU + γEU )xU − gUα = RT fS + γEUλ . (3)

The details of the derivation are available in [12]. To proceed in our derivation, we
will assume for the moment that we can calculate J−1

U = (IU + γEU )−1 and define
B̂ = BJ−1

U . Now, replacing B with B̂ in the derivation and taking fS = f̂S + f̄Sα and
P̂ = (IS − B̂RT ), we derive

P̂ f̂S = LSxS + γB̂EUλ, P̂ f̄S = B̂gU , α =
gTS f̂S + γgTUλ

γ − gTS f̄S
. (4)

The details are again in [12]. Now that we have fS we plug it back into (3) to get

xU = J−1
U (gUα+RT fS + γEUλ) . (5)

The issue still exists of how to compute J−1
U efficiently, as defining JU requires

the seeds and inverting a matrix of size U is too expensive of an operation to perform
during the online phase. We will define J to be the extension of JU to size N given by

J = (I + γE) ≈ (QQT + γQΛ−1QT ) ≈ Q(IK + γΛ−1)QT (6)

⇒ J−1 ≈ Q(IK + γΛ−1)−1QT (7)

since QQT ≈ IN , which implies that QUQ
T
U ≈ IU . Thus

QU (IK + γΛ−1)−1QT
UJU ≈ IU ⇒ J−1

U ≈ QU (IK + γΛ−1)−1QT
U . (8)

Since (IK + γΛ−1) is a diagonal matrix with all positive entries, it is easily invertible,
and can be inverted during the offline phase. The simple multiplication of QU to both
sides during the online phase produces an adequate approximation to J−1

U , fulfilling our
goal of a RW formulation combining priors and precomputation (RW PR PREC).
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2.2 Increased Speed using Extended Precomputation

By using the proposed RW PR PREC, we can reduce the online solving of (2) from
RW PR, an equation of size O(U), to solving (4), two equations of size O(S). How-
ever, due to the low connectivity of the graph, LU is very sparse, and (2) can be solved
in O(U) time. The online phase of RW PR PREC must take O(U) time also, since it
returns a probability vector of size U . We want to perform as few O(U) cost computa-
tions as possible by minimizing the number of matrix multiplications between matrices
of size O(U). Analysis and optimizations of these asymptotic run times were not con-
sidered previously in [1], which we do here by analysis of matrix operations.

Currently, in the offline phase, we computeQ andΛ−1, but now we will precompute
additional matrices to be used to speed up the online phase. The speedup will come from
being able to retrieve the components of these matrices corresponding to the seeded
nodes in O(S) time. We note that Q is an N × K matrix and for storage space con-
siderations we do not want our precomputed matrices to be larger than that. The details
of the additional precomputations are in Algorithm 1, denoted OPT RW PR PREC. By
precomputing these 4 matrices, we save (SK+K+K2)U scalar multiplications, with
the detailed calculations in [12]. We note that when not using priors, with RW PREC,
A1 can still be used for additional speedup.

Algorithm 1 OPT RW PR PREC:
Offline:
1: Calculate Q and Λ−1 from L
2: A1 = LQ
3: A2 = QTQ
4: A3 = (IK + γΛ−1)−1

5: A4 = QT g
Online:
6: P̂ = (IS − (A1S − LSQS)A3(A2 −QTSQS)Λ−1QTS )
7: P̂ f̂S = LSxS + γ(A1S − LSQS)A3(A2 −QTSQS)Λ−1(QTUλ)
8: P̂ f̄S = (A1S − LSQS)A3(A4 −QTSgS)

9: α =
gTS f̂S+γgTUλ

γ−gT
S
f̄S

10: fS = f̂S + f̄Sα
11: xU = QUA3((A4 −QTSgS)α+ (A2 −QTSQS)Λ−1(QTSfS + γ(QTUλ)))

3 Results

We would like our results to show that using our precomputed data we make the RW
online phase fast enough for interactive segmentation without compromising much ac-
curacy. Therefore, we present results showing our high speed gains on real 2D and 3D
data while maintaining negligible (and controlled) reduction in accuracy. We note that
the speed increase allows much quicker seed editing and thus will translate to much
improved accuracy per time spent by user.
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The experiments here were performed using unoptimized MATLAB code run on an
Intel Core 2 Duo (2.4GHz) with 4GB of RAM. The algorithms were implemented by the
authors, utilizing Grady’s MATLAB Graph Toolbox [http://www.cns.bu.edu/
˜lgrady]. A negative exponential function was used for the edge weights, wij =
exp(−β(|ia − ib|)), where ia is the intensity of pixel a. All experiment data was col-
lected over 100 trials, and all parameters were chosen empirically and fixed across all
compared methods. The only parameter effecting the speed of our method is K, the
number of retained eigenvectors.

(a) Seeds (b) Without Pre-
computation
ton = 0.552 s
toff = 0 s

(c) With Precomp.
K = 20
Dice = 0.585
ton = 0.043 s
toff = 8.15 s

(d) With Precomp.
K = 40
Dice = 0.962
ton = 0.063 s
toff = 14.63 s

(e) With Precomp.
K = 80
Dice = 0.996
ton = 0.097 s
toff = 36.64 s

(f) With Precomp.
K = 160
Dice = 0.998
ton = 0.178 s
toff = 136.17 s

Fig. 1: (color figure) Com-
parison of results with and
without precomputation
for segmentation using
priors on an image of size
N ≈ 72, 000 pixels. For
K, the number of eigen-
vectors used, we report
Dice, the Dice similar-
ity coefficient between
RW PR’s segmentation
and OPT RW PR PREC’s
segmentation, ton, the
online time taken, and
toff , the offline time taken.
We note that we are only
concerned with ton, and
with K = 80, our method
achieves excellent results
in less than a fifth of the
time taken when not us-
ing precomputation. Red
and green correspond to
different region boundaries.

The accuracy of the segmentations generated by our algorithms are evaluated by
their similarity to the segmentations generated by RW PR; the accuracy of RW PR is
well justified in other works [11]. We note that the speed and accuracy of our algorithms
depend on the image only throughK, and while we leave analytical methods for finding
optimalK as future work, it was reported in [1] thatK = 40–80 is often enough for 2D
images, as our results in Section 3.1 corroborate, and we needed no more thanK = 350
for larger 3D images as is seen in Section 3.2.

The resolution and noisiness of an image affect how large of a K is needed, and
different noiseless images at the same resolution can require different values of K to
be accurately segmented using precomputation. As seen in Fig. 1, even larger values of
K provide online runtimes much faster than can be achieved without precomputation,
so choosing K large enough to guarantee accuracy is our prime concern. As different
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Fig. 2: Comparison of the
runtimes of the original RW PR
(blue) and our proposed methods
RW PR PREC (green) and
OPT RW PR PREC (red) for
different resolutions of the image
in Fig. 1. Note the standard
deviation for the online runtimes
are all under 0.05 seconds.

images affect the speed and accuracy of our algorithms only through how largeK needs
to be, and since we do not yet have an image dependent way to choose K (except based
on resolution and noise), results for a variety of images would be redundant. Thus we
focus our results on single 2D and 3D images at varying resolutions and with varying
levels of noise. We note that offline runtime increases with K, but does not affect the
application to interactive segmentation.

3.1 2D Results

Tests were performed on the 2D image in Fig. 1 of size N = 265 × 272 ≈ 72, 000
pixels with an 8-connected image graph, β = 30, γ = 0.001, and two regions, where
one region was divided into multiple disconnected sections and seeds were only put in
one of these sections. These segmentation times do not include calculating the priors,
an efficient step which was performed online, and is similar in all cases. The priors
were calculated using a non-parametric density estimation with a Gaussian kernel [11].
Fig. 1 shows the Dice similarity coefficient and the average runtimes in seconds for
both the online and offline phases of OPT RW PR PREC for different values of K and
compares the results to RW PR, showing excellent speedup and minimal accuracy lost.
Fig. 2 compares the runtimes of the different methods for different sized resolutions of
the image in Fig. 1, again showing our precomputation gives excellent speedup.

3.2 3D Results

Tests were performed on a 3D CT image of the knee in Fig. 3 of sizeN = 55×55×36 ≈
109, 000 voxels, a 26-connected image graph, and two regions, bone and non-bone.
The bone region consists of 3 disconnected subregions (the femur, tibia, and patella).
We tested the algorithms using priors by segmenting all the bones but placing seeds
only in the tibia. We used RW PR and OPT RW PR PREC with β = 100 and γ =
0.01 and compared their average runtimes and the Dice similarity coefficient of their
resulting segmentations. The average runtime of RW PR was about 40.5 seconds, and
when K = 350 eigenvectors are used, the average runtime of OPT RW PR PREC was
about 1.56 seconds. The Dice similarity coefficient between RW PR’s segmentation and
OPT RW PR PREC’s segmentation was 0.975. Thus our method achieved a speedup of
25 times over RW PR while maintaining excellent accuracy. The standard deviation of
the runtimes of RW PR was less than 1.0 s, and the standard deviation of the runtimes
of OPT RW PR PREC was less than 0.1 s.
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(a) Without Precomputation (b) With Precomputation

Fig. 3: The bones of
a knee segmented with
S = 100 seeds in one of the
bones. (a) was found using
RW PR in 40.5 seconds
and (b) was found using
OPT RW PR PREC with
K = 350 in 1.56 seconds.
Dice’s similarity coefficient
between the two is 0.975.

3.3 Robustness to Noise

Here, we test the robustness to noise of OPT RW PR PREC. We measured the simi-
larity of the segmentations provided by the exact and approximate algorithms using the
Dice similarity coefficient. The pixel intensities in our test images range from 0 to 1 and
various levels of Gaussian noise with standard deviations σ ∈ [0, 1] were added to the
2D image in Fig. 1 of size N = 265× 272 ≈ 72, 000 pixels with an 8-connected image
graph, β = 30, and γ = 0.001. From Fig. 4a we see that OPT RW PR PREC still
provides good segmentations for small amounts of noise up to σ = 0.2 (with Dice’s
similarity coefficient > 0.95) if a large enough K is used. As the noise increases to
σ = 0.7, Dice decreases. We can see the same trend in Fig. 4b, where K = 200 eigen-
vectors are used in the precomputation and the noise ranges from σ = 0 to 1.

(a) Dice vs. K (b) Dice vs. Noise

Fig. 4: Effect of K and noise on segmentation accuracy. (a) compares the Dice similarity co-
efficient between the segmentations found using RW PR and OPT RW PR PREC. Results are
shown for two levels of noise and for multiple numbers of eigenvectors. (b) shows the Dice simi-
larity coefficient between the segmentations at varying levels of noise withK = 200 eigenvectors
and 20 trials for each level of noise. We see that large enough K lets us account for reasonable
amounts of noise.
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4 Discussion and Conclusions

The above tests give some strong results. We see from Figs. 1 and 2 that the additional
precomputation of OPT RW PR PREC greatly outperforms RW PR in 2D, achieving
a segmentation in about one fifth of the time and with over 99% similarity. From Fig.
3, we see the results are more pronounced in 3D, with OPT RW PR PREC achieving
speedups of a factor of 25 over RW PR while still finding an almost identical segmenta-
tion with over 97% similarity. Furthermore, Fig. 2 shows that all the algorithms appear
to increase linearly in runtime with the number of pixels, as predicted in Section 2.2.

Overall, we have derived a way of combining both precomputation and the use of
priors into the popular RW algorithm. This allows RW to perform much faster segmen-
tations when seeds and priors are either given or changed. Additionally, we’ve shown
that some precomputations can be performed in addition to finding Q and Λ−1 that
can greatly speed up the online phase of the algorithm. These improvements in speed
provide a feasible way to enable the real-time editing of a wider variety of 2D and 3D
images than was previously possible by allowing updating of both seeds and priors. This
allows the user to ensure the accuracy of complex segmentations with minimal effort.
Thus our contributions increase the usability and effectiveness of RW algorithms.

Future work will relate to using information from the image to automatically deter-
mine K, which needs to be set high enough to maintain accuracy. However, since the
effect of a largerK is seen mostly in the offline phase which doesn’t effect interactivity,
we currently simply err on the side of caution when selecting K.
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