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Abstract. We formulate the pigmented-skin-lesion (PSL) matching prob-
lem as a relaxed labeling of an association graph. In this graph labeling
problem, each node represents a mapping between a PSL from one image
to a PSL in the second image and the optimal labels are those optimizing
a high order Markov Random Field energy (MRF). The energy is made
up of unary, binary, and ternary energy terms capturing the likelihood of
matching between the points, edges, and cliques of two graphs represent-
ing the spatial distribution of the two PSL sets. Following an exploration
of various MRF energy terms, we propose a novel entropy energy term
encouraging solutions with low uncertainty. By interpreting the relaxed
labeling as a measure of confidence, we further leverage the high con-
fidence matching to sequentially constrain the learnt objective function
defined on the association graph. We evaluate our method on a large set
of synthetic data as well as 56 pairs of real dermatological images. Our
proposed method compares favorably with the state-of-the-art.

1 Introduction

The presence of a large number of pigmented skin lesions (PSL) is a strong
predictor of malignant melanoma [6]. Since detecting newly appearing, dis-
appearing, and changing PSL is important for early detection of the disease,
many dermatologists advocate total-body photography for high-risk patients
(Figure 1(a)). However, manual inspection and matching of PSLs is a subjec-
tive, tedious, and error prone task. A computer vision system for tracking the
corresponding PSLs greatly improves the matching process, thereby easing the
workload on dermatologists while also improving matching accuracy and re-
moving operator variability [6]. There exists limited works on automating the
matching between lesions. Huang and Bergstresser developed a PSL matching
algorithm based on a Voronoi decomposition of the image space [3]. Yet, their
method does not deal with the presence of the newly appearing or disappear-
ing PSLs. Prednia and White performed affine registration between the two
sets of PSLs [7]. However, their method does not take into account the elastic
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Fig. 1: (a) Example back images of the same subject at two different times. The green and
red dots are overlaid at the PSL’s coordinates. The thickness and the color of the edges
encode the matching confidence between the connected points; the thicker and darker
the line, the higher the confidence (please refer to Section 2.3 for more details). The five
rows in (b) and (c) represent the output of five iterations of the learning step. (b) The
probabilistic solutions. (c) The selected high confidence matchings. The ground truth
matching is shown in (d). (e) and (f) show the estimated matching without and with the
learning step. Wrong matches are shown in red on the back images. It can be noticed
that the unsupervised learning step improves the matching accuracy (i.e. less red lines).

deformation of the human back. Roning and Riech defined a set of geometric
properties as a similarity metric to find the corresponding PSLs. Their method
requires manually determining two initial matches [8]. The authors in [6] com-
puted the matching probabilities of the edges of two graphs representing the
spatial distribution of the two PSL sets. They then extracted pointwise probabil-
ities utilizing the marginalization matrix of the computed pairwise matchings.
However, they did not make use of high-order term to the PSL matching. Re-
cently, there have been several works on high order graph matching, combining
both appearance similarity and geometric compatibility [1,9,10,11].

Compared with the previous works on PSL matching, we present the first
application of high-order term to PSL matching. Our approach is most closely
related to the work of Zeng et. al [11], who formulate a non-rigid surface regis-
tration problem as a high order graph matching problem and extract the match-
ings by solving a corresponding pseudo-boolean function. Their matching cost
function depends on the feature appearance and geometric compatibility of the
pair-wise and triplet-wise correspondences (Section 2.1). To solve their non-
convex optimization problem, they make use of the dual-decomposition (DD)
approach, similar to the work by Torresani et. al [9]. Our method differs from
those in [9,11] in several ways. First, we relax the labels to continuous variables.
By interpreting the relaxed labeling as a measure of confidence, we sequentially
leverage the high confidence matchings via a self-learning approach to learn
the features of the association graph (Section 2.3). We further propose to add
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Fig. 2: (a) Association graph G for graph matching between two graphs, G1 and G2. Each
node in G represents a connection between a point in G1 and a point in G2. The matching
problem between G1 and G2 is formulated as a labeling problem for G. (b-d) illustrate
examples of the unary, binary, and ternary terms used in the MRF-based labeling cost
function in (1) (please refer to Section 2.1 for further details).

a novel entropy energy term encouraging solutions with low uncertainty. We
evaluate our method on a large set of synthetic data (hundreds of pairs) as well
as 56 pairs of real dermatological images. The experimental results confirm the
usefulness of adopting the entropy term and the unsupervised learning proce-
dure (Section 3).

2 Method

Let us denote the PSLs coordinates of the lth image by a graph Gl(Vl , El , Cl),
l ∈ {1, 2}, consisting of a set of nodes Vl (|Vl | = Nl), edges El ⊂ Vl × Vl , and
cliques Cl ⊂ Vl × Vl × Vl . We define a set of intra and inter-edges between the
graphs to encode features related to the nodes connected by the edges and the
cliques. An intra edge Elm,ln ∈ Gl connects the mth vertex Vlm to the nth vertex
Vln, where n 6= m. An inter-edge E1m,2n connects V1m to V2n. Our aim is to find
a mapping Π(V1)→ V2.

The matching problem (i.e. finding the mapping Π) can be formulated as a
graph labeling problem. To this end, given Gl |l=1,2, we first construct their as-
sociation graph G(V, E, C), in which each vertex in V corresponds to an inter-
edge, e.g. V1m,2n = Vmn ↔ E1m,2n (|V| = N1N2) (Figure 2(a)). The matching
problem can then be solved by binary labeling, x, of G [9]. A correspondence
Π(V1m) → V2n is active iff x(Vmn) = 1 and 0 otherwise. The details describing
the objective function for binary labeling is provided in Section 2.1.

Compared with [9], we solve the matching problem as a relaxed (fuzzy)
labeling, i.e. x ∈ [0, 1]. We interpret the fuzzy labels as a measure of confidence.
The high confidence matchings are then extracted for unsupervised learning of
the features of the association graph (Section 2.3).

Let us denote the label by ` ∈ {0, 1}. Then, x`(V) represents our confidence
in V having the label `. Since we have the following equality x0(V) = 1 −
x1(V) in our framework, we denote x1 by x for simplicity.
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2.1 MRF-based Binary Labeling

MRF-optimization seeks the labeling xp for each vertex Vp of graph G(V, E, C)
by optimizing an energy function of the form:

E (x) = wu ∑
p∈V

φx
(

xp
)
+wb ∑

(p,q)∈E

φxx
(

xp, xq
)
+wt ∑

(p,q,z)∈C

φxxx
(
xp, xq, xz

)
(1)

where φx is the unary term which measures the likelihood of labeling a vertex
with a specific label disregarding the labels of any of the neighbours; and φxx
and φxxx are regularization terms penalizing different label configurations of
neighboring vertices. w’s are the weights of the different terms.

We define our unary term as a weighted sum of the two energy terms:

φx(xij) = w(1)
u φ

(1)
x (xij) + w(2)

u φ
(2)
x (xij). (2)

φ
(1)
x (xij) measures the dissimilarity between the appearance descriptors of V1i

and V2j, denoted by FV1i and FV2j :

φ
(1)
x (xij) = xijdu(V1i,V2j) + (1− xij)(1− du(V1i,V2j)), (3)

du(A, B) =
R

∑
r=1
|FA(αr)−FB(βr)|, α = [α1α2...αR], β = [β1β2...βR]

α, β are the indices of FA and FB, which are compared to each other in com-
puting du in (3), and are given by:

FVlm = x(Vlm)11×Nl+1 − [0, x(Vl1), x(Vl2), ..., x(VlNl
)], l ∈ {1, 2}. (4)

where x2×1 is the normalized coordinate of the PSLs resulting from applying
the skin back-template proposed in [6]. In the first iteration, α and β in (3) are
initialized with 1. Therefore, du measures the Euclidean distance between V1i

and V2j, i.e. du

(
FV1i (α = 1),FV2j(β = 1)

)
= |x(V1i)− x(V2j)|, and later on, as

explained in Section 2.3, α and β in (3) will be updated in a sequential learning
step to include more entries of F in computing du.

φ
(2)
x (xij) in (2) is our new entropy term, which is used to encourage the cost

function towards solutions with low entropy or low uncertainty:

φ
(2)
x (xij) = −

(
xij log2 xij + (1− xij) log2(1− xij)

)
≈ xij(1− xij). (5)

Equation (5) shows a quadratic approximation term achieved using a second
order Taylor expansion. We treat x as a probability when calculating Shannon’s
entropy although we didn’t present our method in a formal probabilistic frame-
work. Nevertheless, the intuition of having higher uncertainty as x nears 0.5
and lower uncertainty as x gets close to 1 or 0 still holds.
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Algorithm 1.1: Our proposed MRF-based point matching algorithm.

1: Input: Two point sets V1 and V2; the spatial coordinates of the points: x(V1) and x(V2).
2: Output: A mapping between the vertices: Π(V1)→ V2.
3: Initialization: Construct G(V, E) (Section 2); construct FVlm (4); τ = 0.9; α = 1; β = 1;

w(1)
u = 0.04; w(2)

u = 0.1; w(1)
b = w(2)

b = 0.04; w(1)
t = w(2)

t = 0.02.

4: Compute db (6), dt (7), and du

(
FV1i (α = 1),FV2j (β = 1)

)
= |x(V1i)− x(V2j)|.

5: Define the objective function E(x) = func(φ(1)
x , φ

(2)
x , φxx, φxxx) (Section 2.1).

6: Optimize E(x). . e.g. apply SP [10] or TIP [1] to maximize x = maxx E(x).
7: (A,B) = {(i, j)|xij > τ}. . A and B are the indices of the high confidence nodes in G.
8: if A+ 1 = α & B + 1 = β . The high confidence nodes do not change any more.
9: Π← Hard matching obtained by discretizing X = [xij].

10: else
11: α← A+ 1, β← B + 1.

12: Compute du

(
FV1i (α),FV2j (β)

)
=
|A|+1

∑
r=1
|FV1i (αr)−FV2j (βr)|.

13: Go to step 5.

To measure compatibility between pairwise correspondences, we use:

φxx(xij, xmn) = xijxmndb(
−−−−→V1iV1m,

−−−→V2jV2n) + (1− xijxmn)(1− db(
−−−−→V1iV1m,

−−−→V2jV2n))

−−−→VliVlm =x(Vli)− x(Vlm), db(
−→
A ,
−→
B ) = ω1

b |1−
−→
A .
−→
B

|−→A ||−→B |
|+ ω2

b ||
−→
A |− |−→B ||. (6)

db evaluates the length and direction agreement between the line segments
−→
A

and
−→
B . w1

b, w2
b weight the direction and length terms.

To measure the compatibility in corresponding triplets, e.g. triangles T1 =
̂V1iV1mV1p and T2 = ̂V2jV2nV2q, we use:

φxxx(xij, xmn, xpq) =xijxmnxpqdt(T1, T2) + (1− xij, xmn, xpq)(1− dt(T1, T2)

dt(T1, T2) =w1
t |area(T1)− area(T2)|+

3

∑
i=1

w2
t |]T i

1 −]T 2
2 | (7)

dt measures the difference between the area and the angles of the triangles. The
weights w1

t and w2
t encode the trade off between preserving areas vs. angles.

2.2 Solving for the PSL matching via MRF Optimization

Since we bootstrap our PSL matching from the high confidence matches in
Section 2.3, we restrict our work to the relaxed version of the problem, while
having the entropy term discouraging high uncertainty. We explore: (i) tensor
power iteration (TPI) [1], and (ii) successive projection (SP)1 [10] optimization
1The SP algorithm is applied to the marginalization matrix computed based on the prob-
ability of matching the edges and the cliques [10].
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Method Optimizer
φ
(1)
x φ

(2)
x φxx φxxx SL Objective

Soft vs. Hard Function
CVPR09 [6] SP (Soft) X × X × × MRF1 MRF1 = func(φ(1)

x , φxx)

CVPR08 [10] SP (Soft) X × X X × MRF2 MRF2 = func(φ(1)
x , φxx, φxxx)

ECCV08 [9] DD (Hard) X × X × × MRF1 MRF1EN = func(φ(1)
x , φ

(2)
x , φxx)

CVPR10 [11] DD (Hard) X × X X × MRF2 MRF2EN = func(φ(1)
x , φ

(2)
x , φxx, φxxx)

PAMI11 [1] TPI (Soft) X × X X × MRF2
Proposed TPI (Soft) X X X X X MRF2EN

Table 1: Comparison between the different methods in terms of the optimization do-
main, energy terms, and the self-learning (SL) characteristics.

methods (Section 3). Both TPI and SP provide a soft solution considering global
constraints ∑i xij ≤ 1 and ∑j xij ≤ 1 to ensure partial matching and to avoid
multiple matchings. Note that in Section 3 the results are provided using TPI.

2.3 Self-Learning

As shown in [5], learning the parameters that control the graph matching is
important for improving the matching accuracy. The authors in [5] learn the
weights w in (1) using gradient descent-based approach. We instead learn an
improved objective function by encoding into the unary term new geometric
information from the current high confidence matching. In the learning step
of our method, we update α and β in (3), which indicate the indices of F that
should be considered in measuring du. As shown in Algorithm 1.1, given the
current high confidence matching x(VAB), i.e. (A,B) = {(i, j)|xij > τ}, where
τ is a confidence-threshold and |A| = |B| = R and R is the total number of the
high confidence points, α and β in (3) are updated: α = A+ 1 and β = B + 1.
Therefore,

du

(
FV1i (α),FV2j(β)

)
=

R+1

∑
r=1
|FV1i (αr)−FV2j(βr)| (8)

The αr-th entry of FV1k represents the distance between the vertex V1k and V1α.
In fact, we are effectively diffusing the binary term to the unary term, since this
entry in F is related to the length agreement between the edges. Figure 1 shows
examples of the selected high confidence mappings at different iterations.

3 Results

Given a ground truth matching Π∗, and an estimated mapping Π obtained by
discretizing the estimated fuzzy solution X = [xij] (e.g. applying simple thresh-
olding or the Hungarian algorithm [1,4], where Πij = 1 is interpreted as a map-
ping Π(V1i) = V2j), we use the following error measurement to evaluate the
quality of the estimated mapping: ∆ = ∑ |Π− Π∗|/(N1N2). We evaluate our
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method on synthetic data as well as 56 pairs of real images [2]. Note that we
identify the PSLs’ coordinates on our real data manually and the number of
PSLs in our dataset is varied between 3 and 60.

Our synthetic data follows a setup similar to [6]. A cloud of nc points are
generated. The corresponding points in the second set are constructed by per-
turbing the nc points. Then, different number of outliers n1

o and n2
o (representing

disappearing and newly appearing PSLs) are added to the two sets.
In Table 1, we analyse our method and five state of the art point match-

ing algorithms in terms of different characteristics. In summary, CVPR09 [6],
CVPR08 [10], ECCV08 [9], CVPR10 [11], PAMI11 [1], and our method, can be
implemented by setting the objective function in the form of MRF1, MRF2,
or MRF2EN mentioned in Table 1, and applying different optimization ap-
proaches. For example, we can arrive to PAMI11 [1] by setting the objective
function to MRF2 and using the TPI optimizer. To study the effectiveness of the
entropy term (5), we compare the matching errors resulting from using a given
function, with and without the entropy term; i.e. compare MRF1 vs. MRF1EN
and MRF2 vs. MRF2EN. The results in Figure 3 indicate that adding the en-
tropy term can lead to lower error. The effect of applying different iterations of
the self-learning procedure is shown in Figure 4. The results confirm the use-
fulness of our unsupervised learning from high confidence matches. Note that
the errors are gradually decreasing by increasing the number of the iterations.

A comparison between the point matching methods: CVPR09 [6], CVPR08
[10], PAMI11 [1], and our method on the real data is shown in Figure 5. Note
that all the methods are fed with the normalized coordinates of the PSLs result-
ing from applying the skin back-template proposed in [6]. It can be seen that
the lowest error is resulting from MRF2EN+SL, i.e. the results of augmenting
MRF2EN with the learning procedure.

4 Conclusion

We formulate the PSL matching problem in dermoscopic images as the relaxed
labeling of the corresponding association graph in a high order MRF optimiza-
tion framework. We add a novel entropy term to the objective function encour-
aging the cost function towards solutions with low uncertainty. We also propose
to learn the objective function in a sequential framework by leveraging the high
confidence matching of the fuzzy solutions. Although we evaluate the useful-
ness of the entropy term and the learning procedure on a specific application,
the same idea can be used to extend other existing point matching algorithms.

This work can be extended in a number of ways. As mentioned in Section
2.3, for example, the learning step can be generalized for the binary and ternary
terms of the matching objective function.
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