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Abstract. The bicipital groove (BG) of the proximal humerus retains
the tendon of the long head of the biceps. It is understood that the shape
of the BG is related to the probability of injury to the long biceps tendon
(LBT). Measurements taken of the BG in previous studies from dry bones
and radiographs (henceforth classical measurements) are of single cross
sections of the humerus, and may therefore overlook important BG shape
characteristics. In this study, we test the hypothesis that a novel, medial
axis-based 3D shape descriptor captures all relevant features measured
in previous work, plus more. To this end, we review previous studies
wherein classical measurements have been taken on large numbers of
BGs, yielding a distribution that reveals the nature of a normal BG.
We develop an automated approach to replicating those measurements
on MRI to determine, for each of our data sets, the deviation from the
mean of all the classical measurements. We train a classifier by pairing
our 3D representations with these deviations to evaluate the potential
for computer aided diagnosis of BG pathology based on our 3D shape
descriptor.

1 Introduction

The bicipital groove (BG) of the proximal humerus is located on the humeral
head, and is formed by the greater and lesser tuberosities (figure 1). The long
biceps tendon (LBT) is retained by the BG as the arm moves. Abnormal shape
of the BG can induce injury of the LBT. Relevant shape measurements taken
in previous work (henceforth classical measurements) include BG depth, width,
and medial wall angle (figure 2) [1–5]. A deep, narrow BG can irritate the LBT,
causing tenosynovitis. A shallow, wide BG can favour dislocation of the LBT.
Also, the presence of the supratubercular ridge of Meyer (henceforth the ridge) is
understood to greatly favour dislocation [1, 2]. In previous work, measurements
are taken at a single 2D cross section of the humeral head. Due to large intra-
subject variation in BG shape (figure 1 (b),(c)), such measurements are prone
to overlooking important shape features, motivating the need for a 3D shape
descriptor that captures information along the entire length of the BG.
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Fig. 1. (a) A radiograph intended to show
the location of the BG within the body
(indicated by the small intersecting axial
cross section). (b) A proximal axial cross
section showing the shape of the BG, in-
dicated by an arrow (CT scan shown for
clarity of illustration). (c) A distal axial
cross section from the same patient; note
the large difference in BG shape within a
single patient; this is typical.
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Fig. 2. BG measurements taken from a
single cross section in previous literature.
A: Medial opening angle. B: Total open-
ing angle (capturing width). C: Depth.
(Adapted from [5].)
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Fig. 3. Depiction of the shape descriptor
used in this study [6]. An intertubercu-
lar sheet (yellow) is computed to join the
tuberosities. A medial sheet (blue) is or-
thogonal to the intertubercular sheet and
intersects as near to the deepest BG point
as possible while remaining smooth. Mag-
nitudes of vectors (TM , TL, TD) emanating
from sampled points on these sheets and
terminating at the BG surface form sev-
eral 2D thickness fields (medial wall, lat-
eral wall, depth, and width) capturing BG
shape.
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Fig. 4. Appearance of bone on T2-
weighted MRI. The inner surface where
bone meets bone marrow is the endosteal
surface. The outer surface where bone
meets surrounding tissue is the corti-
cal surface. We must distinguish between
these during surface extraction, because
previous population studies of BG shape
consist of measurements taken on dry
bones and radiographs. Thus, our classical
measurements should measure the cortical
surface.
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In previous work [6], we demonstrated that a 3D, medial axis-based shape
descriptor captures medically relevant shape information as 2D thickness fields
computed relative to a medial sheet positioned to approximately bisect the BG
(figure 3). In the current paper, we investigate the performance of machine learn-
ing classifiers in determining normal vs. pathological BG shapes based on this
descriptor. That is, the input is a set of thickness fields representing a BG shape,
and the expected output is a proper classification of BG shape (e.g. “normal”,
“abnormal medial wall angle”, “presence of the ridge”). The hypothesis is that
the 3D shape descriptor is sufficient for automated determination of the devia-
tion of BG shape from normal. This is a first step in answering the subsequent
question, to be addressed in future work, of whether the 3D shape descriptor is
sufficient for automated determination of the probability of injury to the LBT.
To test the hypothesis, we examine previous studies reporting classical measure-
ments taken on large numbers of BGs (dry bones and radiographs). This yields
a distribution that allows, for a set of classical measurements taken from a BG,
the determination of the deviation from the mean of the distribution. Our au-
tomated approach to classical measurement on MRI allows the determination
of where each of our BGs fits within the distribution given by previous work,
yielding the inputs to our tested classifiers. Our main motivation for pursuing
a machine learning/classification approach to this problem is that identification
of osseous spurs, the ridge, and the angle of the medial BG wall is difficult due
to lack of precise definitions of these structures. This motivates the need for a
3D shape descriptor inherently capturing these features inherently which can be
used in classifier training for identification of pathologies in these structures.

In the course of this work, we face the question: why not directly perform
a study correlating BG shape to incidence of LBT injury? The reason is that
there is an indirect relationship between the anatomical structure whose shape
we are computing (BG) and that whose probability of injury we are trying to
estimate (LBT). It is understood that an abnormal BG shape may predispose
an individual to LBT injury. For example, an osseous spur (bony abnormality)
inside of the BG can cause the LBT to fray and tear [2]. However, it is entirely
possible that at the time of the MRI scan, a patient with an osseous spur in his
BG has a perfectly healthy LBT; his LBT injury, if it is going to happen, has
not happened yet. This presents a problem when training a classifier to learn the
probability of LBT injury based on BG shape: with a practically feasible sample
size, such cases (i.e. healthy LBT in abnormally-shaped BG and vice versa) can
confuse the classifier. Given a sufficiently large sample, one expects the effect of
this confusion to be minimized, but collecting such a sample is cost prohibitive.

The indirect relationship between the BG shape and incidence of LBT injury
is one of this study’s primary motivations. By computing the classical measure-
ments of BG shape and placing each data set in context of the distribution of
measurements from previous population studies, we can determine the deviation
of each BG shape from normal. This allows us to identify and handle cases where
the patient has an injured LBT in a normally-shaped BG and vice-versa. The
other primary motivation of this study is to verify that the shape descriptor suf-
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ficiently captures, at minimum, the classical measurements of BG shape. If this
shape descriptor can be used to effectively train a classifier to perform BG shape
diagnosis, then we can proceed with confidence in a future study establishing a
relationship between this shape descriptor and the probability of LBT injury.
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Fig. 5. Because the BG curves with the contour of the humeral head, it is important
in measuring depth to ensure that depth is measured along vectors orthogonal to the
intertubercular sheet, lying in search planes exemplified in (a). (b) is an enlarged view
of a single search plane from (a) showing the details of the definition of the search
plane at a given slice of the BG. Segment PQ is defined to join the endpoints of the
intertubercular sheet, and vector v1 is defined from P to Q. Vector v2 is defined to
originate from the midpoint M of PQ and be normal to the intertubercular sheet at M .
The search plane is defined by v1 and v2. Rays are cast from points sampled uniformly
along and orthogonal to PQ, constrained to lie in the search plane, and terminating
at the BG surface. The length of the longest such ray (indicated by D) is determined
to be the depth of the BG on this slice.

The remainder of this paper is organized as follows. In section 2 our data
sets and experimental approach are described. In section 3 we give our results
and a discussion, and in section 4 we give some concluding remarks.

2 Material and Methods

This study is based on 32 T2-weighted MRIs of the shoulder taken at 1.5T. 10
of these data sets correspond to patients diagnosed with a normal LBT; 22 are
diagnosed as abnormal (subluxation, dislocation, or tear). Our approach is as
follows (see figure 6).
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Fig. 6. Procedure followed in this investigation. Extracted BG surface points are used
to compute a 3D shape descriptor (figure 3), and also used to compute “classical”
measurements of BG shape used in previous work (figure 2). Based on distributions
of classical measurements determined in previous studies, a diagnosis of normal versus
pathological shape is made for each data set based on its classical measurements. These
diagnoses form labels for a set of training shapes given to a classifier, which attempts
to correctly label BG shapes in the test set. We evaluate the accuracy of the classifier
based on a comparison of these labels to known labels for the test set.
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Fig. 7. (a) A medial wall field rendered as a 2D image, with one axis along the bone
(axial) dimension, and the other along the depth of the BG. (b) The same field af-
ter rescaling along the depth dimension to transform it into a percentage of depth
dimension for alignment.

1. Compute classical measurements.1 Given a set of points sampled from
a BG surface, we automatically compute the width, depth, and medial wall
angle (figure 2) of each data set. Care must be taken to ensure that the

1 The authors wish to acknowledge and thank Eli Gibson for his efforts in discussion
and implementation of this approach to automated classical measurement.
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cortical surface of the bone is extracted, to ensure consistency with previous
population studies of dry bones and radiographs (figure 4). Segmentation is
not the focus of our study and is done manually. To take the measurements,
the BG surfaces are first rotated so that slicing axially yields cross sections
orthogonal to the humerus. An intertubercular sheet is fitted to the tuberosi-
ties (figure 3). At each axial slice S, the intertubercular sheet appears as a
line segment PQ with endpoints P and Q touching the tuberosities. The
depth D of the BG on S is determined as shown in figure 5. The width of
the BG at S is the length of PQ. Starting from the deepest point on the BG
surface on S, points sampled along the medial wall define endpoints of line
segments approximating the wall. Angles of these line segments with respect
to the segment PQ are recorded for S. So, for each BG, we have a set of
depth and width values and a set of medial wall angles. Since measurements
taken in previous work are of a single slice, and previous authors are not
specific in describing how the slice is chosen [7, 2, 4], we aggregate all of our
measurements by taking the mean for a single data set. This yields a single
depth, width, and medial wall angle for each data set for comparison pur-
poses. This single-slice limitation further reinforces the need for a 3D shape
descriptor.

2. Label normal and pathological cases. Previous studies took measure-
ments of depth, width, and medial wall angle on dry bones and radio-
graphs [7, 2, 4]; 130 patients in total. The results are as follows. Medial wall
angle mean: 60.02◦, standard deviation (SD): 15.32◦. Depth mean: 4.19mm,
SD: 0.96mm. Width mean: 7.9mm, SD: 1.42mm. To provide a binary classi-
fication of each BG to the classifier for training, we must specify a standard
deviation cutoff defining normal vs. abnormal. We choose a threshold (1.5
SD for our data, for all measurement types) that results in half of the data
being normal, presenting the greatest challenge to the classifier. Thus, at-
tempts to classify at random result in the poorest possible performance (e.g.
if 90% of the data sets were normal, a classifier could achieve 90% accuracy
by simply classifying all test sets as normal). Each data set is also labeled
according to expert observation of the presence of the ridge.

3. Computation of 3D shape descriptor. An intertubercular sheet is fitted
to close the BG, and a medial sheet is computed orthogonal to the intertu-
bercular sheet on each slice. Medial and lateral wall, depth and width fields
are computed relative to the sheets (figure 3). Our previous publication [6]
gives further details.

4. Anatomical correspondence. To prepare the thickness fields for machine
learning, we establish anatomically meaningful correspondence between el-
ements. Point (i, j) in any thickness field should correspond anatomically
with points (i, j) in the thickness fields of all other data sets. Establishing
correspondence is challenging for the BG as it lacks meaningful anatomical
landmarks. Due to the large slice thickness, the proximal end of the BG
is not reliably determined, and a method for determining the distal end is
debated [4]. Our approach is indirect: since the BG is formed by the tuberosi-
ties of the humerus we align the humeri, consequently aligning the BGs. Our
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shape descriptor is invariant to rigid transformations except axial transla-
tion, and it is not invariant to changes in scale. To establish correspondence,
we find the parameters of the best-fit sphere to the humeral head using the
Hough transform. We align all thickness fields such that the axial coordi-
nate of these sphere centers are the same, thus aligning the bones. We scale
thickness fields to normalize for humeral head size, according to the spheres’
radii, resulting in a set of thickness fields (e.g. figure 7(a)), normalized for
scale and aligned along the bone (axial) dimension. Finally, we rescale the
field along the depth dimension to make the fields rectangular by resampling
thickness values from 0 to 100% along the depth of the BG (figure 7(b)).

Classical Measurement Classifier Error No. Principal components

Width Quadratic Bayes 0.1875 6
Depth Min. LS Linear 0.1875 6

Medial wall angle Quadratic Bayes 0.3750 15
Supratubercular ridge Min. LS Linear 0.1250 6

Table 1. Results of testing of classification, showing the methods that gave the best
performance against our data. The error indicates the proportion of data sets that were
mis-classified.

5. Classification. We performed dimensionality reduction using PCA on the
1000D vectors formed by the thickness fields. We then trained several classi-
fiers against the dimensions of the thickness field data capturing 95% of the
variation. We also trained classifiers to recognize the presence of the supratu-
bercular ridge of Meyer [1] from the depth fields. Testing was performed in
a leave-one-out fashion, with classification errors averaged over all rounds.

3 Results

Table 1 shows the results of classification. Accuracy was over 80% for most clas-
sifications; different types of classifiers performed best for different tasks. Using
classifiers in the PRTools v.4 package 2, we obtained best results with the min-
imum least square linear classifier and quadratic Bayes normal classifier. No
classifier performed adequately in diagnosis of medial wall angle abnormalities.
Vagueness regarding the slice locations of BG measurements taken in previous
studies may also adversely affect classification. Considering these obstacles, the
results are encouraging; they suggest that the majority of important BG shape
features are captured by our representation. Especially encouraging is the clas-
sification performance for the ridge, which can be difficult for the human expert
to identify.

2 PRTools v.4, Delft U. of Technology
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4 Conclusion

In this work, we investigated the ability of a 3D shape descriptor for the BG to
capture aspects of shape known to be related to LBT injury. We showed this by
demonstrating that classification algorithms can be trained, using our shape de-
scriptor, to perform accurate diagnosis of BG shape abnormality. The outcome of
this investigation is that classification performance using this shape descriptor is
acceptable, given the practical obstacles of small sample size and lack of precise
literature specifying how some classical measurements were taken in previous
studies. The auxiliary aim of this work is to illustrate practical considerations
that need to be addressed in a computational study of musculoskeletal disorders
on real data, such as development of strategies for handling small sample sizes
and anatomical alignment of structures that may lack clear anatomical land-
marks. Future work includes establishing the relationship between the 3D shape
of the BG and the incidence of injury to the LBT.
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