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Abstract. Loss of muscle mass in severe chronic obstructive pulmonary
disease (COPD) increases the risk of mortality more than ten-fold com-
pared to those with mild disease. Magnetic resonance imaging (MRI)
has been used as a valid, reliable and non-invasive tool to investigate
the changes in muscle mass in people with COPD. Using MR images
to perform 3D shape analysis of thigh muscles, we extended and applied
several state-of-the-art 3D shape descriptors to examine the classification
accuracy of a trained support vector machine classifier to distinguish 4
thigh muscles in 20 people with COPD versus 20 healthy controls. The
results of the study show high classification accuracy (with an average of
94%). Such a classification system may identify patients at risk of COPD
more readily so that early interventions to reverse muscle atrophy can
be provided.

1 Introduction

Chronic obstructive pulmonary disease (COPD) is defined by progressive air-
flow limitation that is not fully reversible, which causes loss of thigh muscle
mass (muscle atrophy) in people with COPD. The statistics reported by the
World Health Organization show that COPD shares 4th and 5th places with
HIV/AIDS as a single cause of death (after cardiovascular disease, cerebrovas-
cular disease and acute respiratory infection) [4]. Magnetic resonance imaging
(MRI) has been widely used as an appropriate tool for monitoring and evaluating
the differences in muscle disease distribution and severity [12]. Complimentary
techniques to MRI that can better detect atrophy-related changes in individ-
ual thigh muscles might facilitate targeting of interventions such as strength
training and gene therapy in people with COPD [12]. Thus, more effective ther-
apeutic approaches and preventive strategies can expedite the improvement of
muscle function, exercise tolerance, and physical activity in people with COPD
[12]. Such a diagnostic technique could also have more widespread application
to other chronic diseases that demonstrate muscle atrophy. Recently, in [10],
we investigated 3D shape and size measurements to examine the classification



accuracy of a trained support vector machine (SVM) classifier in distinguish-
ing individual thigh muscles in a group of COPD patients compared to healthy
people, whom were range-matched for age, gender, and body mass index. The
aim of this study is to further explore, extend and employ state-of-the-art 3D
shape descriptors (e.g. wavelet transform-based methods [14]) to achieve higher
classification accuracy.

Depending on the spatial extent of the region of interest of anatomical struc-
tures, shape descriptors can be classified into two main categories: local or global
features. Shape classification using local features requires establishing point cor-
respondence between the given shapes. For neurological (non-musculoskeletal)
applications, several approaches have been proposed to compare the extracted
corresponding local shape descriptors for classification [21]. However, in the ab-
sence of identifiable anatomical landmarks to establish correspondence between
the shapes, which is the case for thigh muscles, global shape descriptors could
be more useful. Several studies have been performed to investigate the relation-
ship between the shapes of anatomical structures and their pathological groups
using global shape descriptors. For example, Durrleman et al. [6] characterized
3D shapes of brain structures via vector fields and constructed global shape de-
scriptors by taking the integral of the vector fields. Gutman et al. [9] proposed
to extract a rotation invariant shape descriptor of an inverse conformal map
for the hippocampus surface using a spherical harmonics representation. Wang
et al. [19] and Chen et al. [3] applied Fourier descriptors to the MR images to
diagnose autism from MR images and to the description of shape changes in the
human mandible, respectively.

To the best of our knowledge, there is a conspicuous scarcity of studies that
have examined the relationship between (non-cardiac) muscle pathology and
morphology outside our own group’s work. Kaick et al. [17] used the statistics
of the Fourier coefficients extracted from 2D contours of the muscle to clas-
sify supraspinatus muscle and differentiate a normal supraspinatus muscle from
several pathologies. However, these features were not used for thigh muscle clas-
sification. Ward et al. [20] computed a number of 3D shape descriptors (e.g.
volume, surface area, 3D moments described in Table 1) for supraspinatus mus-
cle classification. HajGhanbari et al. [10] used the same shape descriptors applied
by Ward et al. [20] for thigh muscle classification and made them more localized
by dividing each muscle into four equal quarters (regions) along its longest axis
and calculated the measures for each region. In our aforementioned works, we
have not yet utilized state-of-the-art 3D shape descriptors for thigh muscle clas-
sification. In Section 5, we compare the classification accuracy of our proposed
method to these earlier techniques [10,20].

In this work, to study thigh muscle anatomy, we utilize a method that encodes
localized morphological properties without the prerequisite of explicitly calculat-
ing a point-to-point correspondence between shapes. In particular, we first apply
the wavelet transform (WT)-based shape descriptors proposed by Papadakis et
al. [14] (Section 3); second, we propose a methodological extension of Papadakis
et al.’s work [14] in a way that the descriptor follows the natural geometry of the



Measurement Description

1 3D moment J1
Capture characteristics of the spatial distribution of
the voxels that make up the muscle shape.

2 3D moment J2

3 3D moment J3

4 Mean of distances to centroid
Measure surface non-sphericity.

5 Std. dev. of distances to cen-
troid

6 Eigenvalue ratio λ1/λ2
Characterize the tubular, planar, and spherical
geometry of the shape.

7 Eigenvalue ratio λ1/λ3

8 Eigenvalue ratio λ2/λ3

9 Surface area Calculated as the sum of the areas of the triangular mesh
of the muscle.

10 Volume Calculated as the number of voxels inside the mesh of
the muscle multiplied by the size of each voxel in mm3.

11 Surface area/volume The ratio between the surface area and volume.

Table 1: Measurements taken by Ward et al. [20] for supraspinatus muscle classifica-
tion.

muscle more accurately (Section 3.2). We validate the classification accuracy of
the extracted features on MR images taken from the individual thigh muscles of
40 subjects (20 healthy versus 20 people with COPD) (Section 2). The results of
our study show that SVM-classifier can differentiate individual thigh muscles in
COPD group from those of the healthy group with an average accuracy of 94%.
A comparison between the extracted feature vectors reveals that the WT-based
shape descriptors outperform Ward et al.’s [20] and HajGhanbari et al.’s [10]
shape descriptors for all of the four knee flexor and hip adductor muscles. In
addition, the classification accuracy of our proposed extension of the WT-based
descriptors is greater than that of the original method in [14] (Section 5).

2 Material

Forty subjects, twenty people with COPD and twenty healthy adults, matched
for age, gender, and body mass index participated in this study. T1-weighted MR
images (field of view 40 cm2, matrix 256 ×256, 5 mm thick) were taken from
each subject’s thigh from the anterior superior iliac spine to the tibial plateau,
yielding 80 to 100 axial slices for each subject. Once the images were collected
using the DICOM image file format, they were loaded into ITK-SNAP software
[10]. Slice-by-slice segmentation of 4 individual thigh muscles was performed by
an expert clinician (Figure 1). Finally, triangulated meshes were extracted from
the ITK-SNAP 3D segmentation and were used for the shape representation
and classification steps. Note that, in this study, in order to prepare scale and
translation invariant shape descriptors, the muscles are normalized to femur
length for each subject and are centered around the origin. Also, the imaging
protocol ensured a consistent orientation of the knee extensor and flexor muscles
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Fig. 1: Example segmentation of the knee extensor and flexor muscles in ITK-SNAP:
(a) Horizontal, (b) sagittal, (c) coronal, and (d) 3D mesh view. The different knee
extensors and flexors are represented by different colors.

across all subjects. More details about the data acquisition and surface mesh
preparation can be found in [10].

3 2D Wavelet Transform Shape Descriptors

Papadakis et al. [14] computed 3D shape descriptors using the mean and variance
of the wavelet transform (WT) coefficients of panoramic views of a 3D object. In
the following sections, we illustrate how to extract the panoramic views of the
3D mesh of the muscle (Section 3.1) and then describe our proposed extensions
to the cylindrical projection (Section 3.2). Finally, we discuss the extracted WT-
based shape descriptors (Section 3.3).

3.1 Extraction of Panoramic Views by Cylindrical Projection

A panoramic view of a 3D object is obtained by projecting the 3D object onto
the lateral surface of a projection cylinder ; a cylinder that is parallel to one of
the three principal axes (X, Y, or Z). The panoramic views are used to capture
the position and orientation of the object’s surface in 3D space. Figure 2(b)
depicts the discretized lateral surface of the projection cylinder parallel to the
Z-axis, whereas Figure 2(e) shows a cross section of the 3D object (blue curve)
and the cylinder (green circle). In the cylindrical projection step of Papadakis et
al.’s method [14], each point of the cylinder (e.g. point p in Figure 2(e)) would
be assigned the radius r of the cylindrical coordinate of the furthest point inside
the sector containing that point (e.g. point q in the gray sector in Figure 2(e)).
Then, a 2D gray-scale image is created by unfolding the cylinder, such that the
image pixels and intensities correspond to the cylinder’s vertices and the radii
assigned to them, respectively (Figure 2(f)). Performing similar projections onto
the other cylinders parallel to the X and Y axes, results in two additional gray-
scale images.

Construction of the WT-based shape descriptors from the extracted 2D im-
ages resulting from X, Y and Z cylindrical projections is described in Section 3.3.
Let WT-X, WT-Y and WT-Z denote the extracted WT-based shape descriptors
of the projection cylinders oriented along the X, Y, and Z-axis, respectively. Pa-
padakis et al. [14] constructed the shape descriptors by concatenating WT-X,
WT-Y and WT-Z into WT-XYZ, i.e. WT-XYZ=[ WT-X, WT-Y, WT-Z]. Since
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Fig. 2: Panoramic view of a 3D shape. (a) 3D mesh of a thigh muscle. The change
in color from blue to red reflect the increasing Z coordinates of the mesh vertices.
(b) Discretized (or sampled) cylinder, on which the muscle in (a) is projected. (c)
3D representation of both the muscle and the cylinder prior to projection. (d) 3D
representation of a cross section (green plane) of the mesh and the projection cylinder.
Note how the angle φ is defined on the plane. (e) The 2D cross section of (d). Each point
on the cylinder surface (e.g. point p in (e)) is assigned the radius (r) of the cylindrical
coordinate of the furthest point of the muscle (blue curve) inside the sector containing
that point (e.g. point q in the gray sector). (f) 2D image obtained from unfolding the
cylinder in (b). The intensity values at each pixel of the 2D image in (f) correspond to
the radii r assigned to the cylinder’s vertices.

each thigh muscle in our study has a tube-like prolate shape that is elongated
and aligned along the Z-axis (i.e. the Z-axis is the principle axis of each muscle
as shown in Figure 2(c)), the projections along the cylinder parallel to the Z-
axis are the most informative. Our results in Section 5 confirm that using only
WT-Z as the shape descriptors achieves a classification accuracy similar to that
of WT-XYZ but requires only about one third of the computation.

3.2 Extraction of Panoramic Views by Mesh Projections

Generally, the linear axes of the muscles are aligned with the Z-axis. However, to
be more precise, each muscle has a non-linear (curved) axis that extends along
the muscle’s central axis (or medial axes). For this reason, cylindrical projections
that follow the natural curved axis of the muscle geometry are more accurate
and are expected to be even more descriptive than those resulting from a linear
axis. In this subsection, we describe the details of developing this curved axis
extension.
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Fig. 3: Extraction of panoramic views by mesh projection. (a) Cross section of the
muscle (blue curve) and the cylinder (green circle). (b) There is no intersection of the
muscle (blue curve) with any of the green sectors. (c) Vertices of the contour of the
mesh in the cross section. (d) Distances (purple lines) from the centroid of the curve
to the mesh vertices in the cross section. (e) Radius of the cylindrical coordinate of the
points (green lines), i.e. the distance from the origin (x, y) = (0, 0) to the mesh vertices
in the cross section. (f) 3D mesh of the muscle. (g-i) 3D representation of the distances
assigned to the vertices based on: (g) the medial curve of the muscle; (h) the radius of
the cylindrical; and (i) the radius of the spherical coordinates.

Our methodological extension is illustrated with the example in Figure 3.
Given a cross section of the muscle (blue curve) and the Z-axis-aligned cylinder
(green circle) shown in Figure 3(a), in the cylindrical projection step of Papadakis
et al.’s method [14], the values assigned to the vertices belonging to the green
sectors in Figure 3(b), would be zero. The reason is that none of the points of
the muscle’s cross-section contour (blue curve) lie inside any of those sectors.

As the primary goal is to characterize local geometrical properties, assigning
zero values to the sectors that do not intersect with the muscle would cause



a problem because this results in having sectors devoid of mesh points in the
projection images; and due to that, the unfolded image would contain numerous
missing pixel values. Clearly, this approach would lose information that captures
the muscle mesh geometry. To address this problem, we perform the projections
on a curved cylinder whose axis follows the geometry (the central or medial
axis) of the muscle, rather than performing the projections on the Z-axis-aligned
cylinder. In other words, we effectively perform the projections onto the muscle
mesh itself.

Given the 3D mesh of the muscle (Figure 3(f)), we compute the 2D projection
image by first assigning values to the mesh vertices and then unfolding the mesh
into the 2D image with scalar-valued pixels. The values assigned to the vertices
are chosen to be the radii of the polar coordinates of the muscle cross section,
with the caveat that the center of the coordinate system has to be translated
from its position along the Z-axis (Figure 3(d) ) into its new position at the
center of the muscle cross section curve (Figure 3(e)). Collecting these new cross
section centers from cross sections at different Z values form the curved axis of
the muscle (black curve in Figure 3(g)); an approximation of the muscles medial
axis [15,16]. Finally, we collect the WT-based shape descriptors of the resulting
image into the vector WT-MED (short for wavelet-medial).

We also evaluate two additional variant approaches:

I . In contrast to WT-MED, the first variant does not translate the center
of the polar coordinate system but rather maintains its position along the
Z-axis (similar to the original WT-Z). However, different from WT-Z, which
assigns a value to each vertex of the projection cylinder parallel to the Z-
axis, this method assigns a distance to each vertex of the muscle’s mesh
(Figure 3(h)). The assigned values are effectively the radii of a cylindrical
coordinate system representation. Therefore, we refer to the extracted WT-
based shape descriptors from the resulting image by WT-CYL.

II . The second variant assigns the distance from the center of the muscle in 3D
(not the center of the 2D cross section of the muscle) to the mesh (Figure
3(i)). This essentially encodes the radius of the spherical coordinates of the
mesh vertices and, hence, we refer to this approach as WT-SPH.

3.3 Statistics of the WT Coefficients

All of the projection approaches presented earlier result in 2D scalar images,
which we denote by f(u, v). The wavelet transform is then performed on these
2D images and wavelet coefficients are collected to construct the shape descrip-
tors. Similar to the Fourier transform (or Fourier analysis or decomposition),
which captures the magnitudes of different sinusoidal harmonics or frequencies
existing in the whole 1D function (or signal) or 2D image, the wavelet transform
achieves the same goal with the following extensions [2]. Instead of a global view
of the sinusoidal frequencies that make up the whole signal, the wavelet trans-
form focuses on analyzing the similarities between different localized regions of
the signal and scaled and translated versions of certain function, known as the
mother wavelet (instead of the sinusoidal functions in the Fourier analysis). In



particular, the discrete wavelet transform dwt coefficients of the 2D image f(u, v)
are extracted by:

dwt(s, a, b) =
1√
s

M
∑

u=1

N
∑

v=1

f(u, v)ψ(
u− a

s
,
v − b

s
) (1)

where ψ is the mother wavelet, and s and (a, b) are scale and translation pa-
rameters, respectively. In the WT framework, the WT coefficients are extracted
from the different subband images of f resulting from filtering and sub-sampling
of f at different scales. At each scale s, there are three detail images, denoted
by fLH

s , fHL
s and fHH

s , each of which respectively contains the horizontal, ver-
tical and diagonal high frequency information of the image. There is also an
approximation image, denoted by fLL

s , which contains the low frequency infor-
mation (fLL

s is recursively decomposed as shown in Figure 4). For N differ-
ent decomposition levels, the total number of subband images fi is 3 × N + 1:
fi ∈ {fLH

s , fHL
s , fHH

s , fLL
N } for s ∈ {1, 2, ..., N}.

Original 
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f HH1
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Fig. 4: Wavelet decomposition of a 2D image. A schematic diagram showing how an
original image (a) is decomposed into 4 subbands (b) (i.e. one-level, N = 1), and then
how fLL

l is further decomposed (c) resulting in 7 subbands (i.e. two-level, N = 2).

The WT-based feature vector FV of f is computed as the concatenation of
the means and variances, µi and σi, of the WT coefficients of every subband
image fi, and is given by:

FV = {FV1, FV2, ..., FV3×N+1}, FVi = {µi, σi}. (2)

where µi and σi of the computed coefficients dwti (1) of the i
th subband image

fi of size mi × ni are given by:

µi =

mi
∑

u=1

ni
∑

v=1

|dwti(s, u, v)|

mi × ni

, σi =

√

√

√

√

√

mi
∑

u=1

ni
∑

v=1

(dwti(s, u, v)− µi)2

mi × ni

. (3)

The WT-based features in [14] (WT-XYZ) are extracted using (2) for the
computed X, Y and Z paranomic views of the object (Section 3.1).



4 Muscle Shape Classification

Given a mesh representing a segmented muscle from a novel 3D medical image,
our goal is to distinguish abnormal muscles from healthy muscles. In particular,
we would like to perform 4 independent classification tasks for the 4 muscles:
rectus femoris (RF), vastus lateralis (VL), bicepts femoris-short (BS), and sar-
torius (SS), which belong to the muscle groups: knee extensors, knee flexors, and
hip adductors (Table 2). In order to evaluate the accuracy of the classifier, we
perform a leave-one-out (LOO) cross-validation [18]. We use a non-linear SVM
for thigh muscle classification, which requires the setting of two parameters: C,
which assigns a penalty to errors, and γ, which defines the width of a radial basis
function [18]. We compute the false positive (FP) and true positive (TP) rates
of the classifier for different values of C and γ in a logarithmic grid search (from
2−8 to 28) to create a receiver operating characteristic (ROC) curve. Therefore,
each pair of the parameters (Ci, γj) would generate a point (FPij , TPij) in the
graph. The ROC curve is constructed by selecting the set of optimal operating
points. Point (FPij , TPij) is optimal if there is no other point (FPmn, TPmn)
such that FPmn ≤ FPij and TPmn ≥ TPij . We use the area under the gener-
ated ROC curves (AUC) obtained from classification involving different shape
descriptors to compare their discriminatory power.

5 Results

Figure 5 and Table 2 show the ROC curves and the areas under them computed
for the global shape descriptors used in [20] and [10], which we denote by GLOB1
and GLOB2, respectively (Section 1), and WT-based shape descriptors (WT-
XYZ, WT-Z, WT-CYL, WT-SPH and WT-MED described in Section 3) to
classify 4 individual thigh muscles into normal vs. COPD cases.

Comparing the classification accuracies reported in Table 2, we make the
following observations:

i. Averaged over all the 4 muscles (column 1 in Table 2), the highest SVM
classification accuracy is obtained using WT-MED, where individual muscles
in the COPD group are differentiated from those in the healthy group with
an average classification accuracy of 93.69%.

ii. WT-based shape descriptors (WT-XYZ, WT-Z,WT-CYL,WT-SPH andWT-
MED) outperform GLOB1 [20] and GLOB2 [10].

iii. The classification accuracy of the 1D WT-based descriptors (WT-Z, WT-
CYL, WT-SPH and WT-MED) is greater than that of the 3D descriptor
(WT-XYZ) [14]. It can be seen that, for any muscle, we can find at least one
1D shape descriptor with accuracy better than 3D.

iv. WT-based descriptors using the proposed mesh projection outperform the
WT-Z using the cylindrical projection.

v. The last column shows our recommended shape descriptor for each muscle.

Furthermore, Tables 3-4 show the recall R = TP/(TP + FN) and precision
P = TP/(TP+FP ) resulting from the optimum setting of the parameters (C, γ)



in the SVM-classifier. The results indicate that, on average over all the 4 muscles,
the maximum precision and recall are achieved by our proposed WT-MED.
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Fig. 5: ROC curves of the classifiers resulting from using the different shape descriptors
for the 4 muscles. Areas under the ROC curves are reported in Table 2.

Muscle
Area under the ROC curves Selected

GLOB1 GLOB2 WT-XYZ WT-Z WT-CYL WT-SPH WT-MED Descriptor(s)

RF 0.7250 0.6200 0.6837 0.8750 0.7462 0.9500 0.8475 WT-SPH

VL 0.6188 0.5938 0.7500 0.5413 0.7900 0.7250 0.9750 WT-MED

BS 0.9025 0.9500 0.8250 0.9000 0.5813 0.9750 0.9750 WT-SPH,
WT-MED

SS 0.5850 0.6650 0.5650 0.6225 0.8750 0.8750 0.9500 WT-MED

Mean 0.7078 0.7072 0.7059 0.7347 0.7481 0.8812 0.9369

Table 2: Area under the ROC curves in Figure 5. Highest accuracy acquired for each
muscle is colored in red. The last column shows, for each muscle, the shape descriptor(s)
that resulted in the highest AUC.

Muscle
Precision of the classifier Selected

GLOB1 GLOB2 WT-XYZ WT-Z WT-CYL WT-SPH WT-MED Descriptor(s)

RF 0.7143 0.5930 0.6594 0.8947 0.6942 0.9091 0.7804 WT-SPH

VL 0.5955 0.5544 0.7500 0.5291 0.7148 0.7647 0.9524 WT-MED

BS 0.8619 1.0000 0.7826 0.9444 0.5846 0.9524 0.9524 WT-MED

SS 0.5919 0.6515 0.5455 0.5873 0.8261 0.8571 0.9091 WT-MED

Mean 0.6909 0.6997 0.6844 0.7389 0.7049 0.8708 0.8986

Table 3: Precision values resulting from using the optimum setting of the parameters
(C, γ) in SVM-classifier.

6 Discussion and Conclusion

A computer-aided method for diagnosing muscle atrophy in people with COPD
could facilitate targeting of interventions such as strength training or gene ther-
apy. In order to differentiate 4 individual thigh muscles in the healthy versus
COPD groups, we first applied a state-of-the-art 3D shape descriptor; the WT-
based shape descriptor proposed by Papadakis et al. [14] resulting in cylindrical
projections. A comparison between the classification accuracies obtained by the



Muscle
Recall of the classifier Selected

GLOB1 GLOB2 WT-XYZ WT-Z WT-CYL WT-SPH WT-MED Descriptor(s)

RF 0.7000 0.6000 0.6250 0.9000 0.6250 0.9000 0.7500 WT-SPH

VL 0.5250 0.4500 0.7500 0.4500 0.6500 0.8000 0.9500 WT-MED

BS 0.8500 1.0000 0.7500 0.9500 0.6167 0.9500 0.9500 WT-MED

SS 0.6500 0.6500 0.6000 0.5000 0.8000 0.8500 0.9000 WT-MED

Mean 0.6813 0.6750 0.6813 0.7000 0.6729 0.8750 0.8875

Table 4: Recall values resulting from using the optimum setting of parameters (C, γ)
in SVM-classifier.

aforementioned descriptors and the global shape descriptors by Ward et al. [20]
and HajGhanbari et al. [10] shows that, averaged over all the 4 muscles, the
WT-based shape descriptors outperformed the global shape descriptors.

We extended the WT-based descriptors by introducing medial-based mesh
projections rather than the cylindrical projections, in order to follow the natural
geometry of the muscle more accurately, and to rely on a 1D projection rather
than 3D projections. The experimental results showed that we achieved improved
classification results for all the 4 muscles using the extended descriptors. These
results support the shape- and axis-specific use of shape descriptors for diseased
muscles. Because different chronic diseases can have a differential impact on cer-
tain muscles or specific muscle regions, muscle-specific shape descriptors should
be applied to better discriminate muscle anomalies.

Although the presented descriptors were applied to differentiate thigh mus-
cles, they might have a widespread application for other conditions and chronic
diseases that result in muscle atrophy such as chronic heart diseases, AIDS,
cancer, and osteoarthritis [1].

One direction for future work is to extend the medial-based, mesh-projection
descriptors to complex anatomical shapes that exhibit medial branches in their
skeletons (in contrast to the single medial curve that we used here for the tube-
like thigh muscles). Possible future work on muscle shape analysis include es-
tablishing point correspondence between meshes and building statistical shape
models [5], examining alternative shape representation via harmonic analysis
[8,13], and studying shape spaces on non-linear manifolds [11,7].
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