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Abstract

Many previous studies in multiple sclerosis (MS) have
focused on the relationship between white matter lesion vol-
ume and clinical parameters, but few have investigated the
independent contribution of the spatial dispersion of lesions
to patient disability. In this study, we examine the ability of
four different measures of lesion dispersion including one
connectedness-based measure (compactness), one region-
based measure (ratio of lesion convex hull to brain volume)
and two distance-based measures (Euclidean distance from
a fixed point and pair-wise Euclidean distances) to act as
potential surrogate markers of disability. We use a set of
T2-weighted and proton density-weighted MRIs of 24 MS
patients, collected from a single selected scanning site par-
ticipating in an MS clinical trial. For each patient, clinical
status is available in the form of expanded disability sta-
tus scale (EDSS) a standard measure of disability in MS.
We segment all white matter lesions in each scan with a
semi-automatic method to produce binary images of lesion
voxels, quantify their spatial dispersion using the defined
measures, then perform a statistical analysis to compare the
dispersion values to EDSS and total lesion volume. We use
linear and rank correlations to investigate the relationships
between lesion dispersion, EDSS, and total lesion volume,
and regression analysis to investigate whether there is a po-
tentially meaningful relationship between lesion dispersion
and EDSS, independent of total lesion volume. Our results
show that one distance based measure, Euclidean distance
from a fixed point, correlates with EDSS more strongly than
total lesion volume (r = 0.57 vs. r = 0.47 for Pearson corre-

lation), and has predictive value that is at least partly inde-
pendent of lesion volume. The results suggest that for any
two given patients with similar lesion loads, the one with
greater dispersion would tend to have greater disability,
but further experiments with larger data sets are required
to confirm these findings.

1. Introduction
Measurement of the total white matter lesion volume on

magnetic resonance images (MRIs) is a widely used out-

come measure for monitoring the pathological state and

progression of multiple sclerosis (MS) [9]. However, previ-

ous studies have shown that the relationship between lesion

volume and patient disability is generally weak, especially

in T2-weighted (T2w) imaging studies [1]. Specifically, the

cross-sectional correlation between T2w lesion volume and

the Extended Disability Status Scale (EDSS), which is the

most frequently used clinical measure in MS [10], typically

ranges between 0.15 to 0.4 with some studies reporting val-

ues as high as 0.6 [1]. A number of factors are known

to affect the strength of this correlation, including the lack

of pathological specificity of T2w imaging, neuroplasticity

which helps the brain adapt to local injury, and limitations

of the EDSS [2]. In addition to having a limited predictive

value, the focus on global lesion volume has left other le-

sion variables under-explored. In this study we investigate

whether mathematical measures of the 3D spatial disper-

sion of lesion voxels can reveal clinical significance that is

independent of lesion volume. A number of studies have

explored the contribution of lesion location (e.g., [5, 12]) to
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Figure 1: White matter lesions, transverse view; left: a pa-

tient with the total lesion volume of 3071 mm3 and EDSS

of 3.5, right: a patient with the total lesion volume of

2957 mm3 voxels and EDSS of 6.5. This example illustrates

our hypothesis that for any two given patients with similar

lesion loads, the one with greater dispersion would tend to

have greater disability.

MS disability, most commonly done using a lesion proba-

bility map that is sometimes referred to as representing “dis-

tribution” [3, 6], but there has been minimal work done to

quantify the spatial extent of MS lesions and its contribu-

tion to disability while controlling for volume as a variable.

We use the term “dispersion” rather than “distribution” to

define spatial extent in order to distinguish our work from

studies on lesion location. Our hypothesis is that for any

two given patients with similar lesion loads, the one with

greater dispersion would tend to have greater disability due

to a greater global impact on the brain, thereby reducing its

capacity to adapt. Figure 1 presents a motivating example,

and shows the projection of all lesion voxels onto the largest

transverse slice of the brain scans of two patients in our data

set. These patients have approximately the same total le-

sion volume (∼3000 mm3), but different spatial dispersion.

The EDSS value for the patient with more distributed le-

sions is higher (6.5 vs. 3.5). Exploring such relationships

can improve the understanding of MS and potentially lead

to the discovery of novel surrogate biomarkers for clinical

use. In this paper, we investigate four different measures

of lesion dispersion. The first, termed compactness, quan-

tifies the connectedness between the lesion voxels without

incorporating distances. The second measure is the volume

ratio of the convex hull of the lesion voxels to the brain vol-

ume. The convex hull approximates the region impacted

by the lesions and in most cases includes normal-appearing

tissue. The third measure uses the mean, variance, entropy

and skewness of the distribution of the Euclidean distances

of the lesion voxels from a fixed reference point. The last

method also uses the mean, variance, entropy and skewness

of a set of Euclidean distances, but computed as pair-wise

distances between the lesion voxels rather than from a fixed

reference point. After computing each measure for our pa-

tient samples, we perform a statistical analysis to determine

the strength of its relationship to the patients’ disability, and

compare the contribution of the dispersion to that of lesion

volume. To the best of our knowledge, this is the first study

on the relationship between spatial lesion dispersion and

MS disability.

2. Methods
2.1. Data

We use T2w and proton density-weighted (PDw) MRIs

of 24 patients from a selected scanning site of an MS clin-

ical trial. The scans were acquired in the axial orientation

on a Philips Achieva 3T scanner with a dual-echo sequence

with TE1 = 15.0 ms, TE2 = 75.0 ms and TR = 2700.0 ms.

The original image dimensions are 256× 256× 50 with

voxel size 0.937 mm× 0.937 mm× 3.0 mm. The white

matter lesions are delineated on each T2/PDw pair us-

ing a semi-automatic method [8] to produce binary im-

ages in which the lesion voxels have the value of 1. The

3.0 mm slices of the binary images are divided into 1.0 mm

slices to account for voxel anisotropy in the lesion dispers-

sion measurements, resulting in images with dimensions of

256× 256× 150. For each patient, clinical status is avail-

able in the form of an EDSS score, which is defined on a

scale from 0 to 10, where 0 represents a normal neurologi-

cal exam, and 10 represents death due to MS. The score is

based upon testing and examination of functional systems

of the patients by a qualified neurologist. The patient sam-

ple is a mix of RRMS (13) and SPMS (11) patients with

well-distributed EDSS values that have a mean of 5.0, stan-

dard deviation of 2.2, and range of 1.5 – 8.0.

2.2. Lesion dispersion measures

Compactness. Developed by Bribiesca [4] to quantify the

connectedness of shapes composed of cubic voxels, com-

pactness is mathematically defined as follows:

C =
n−A/6

n− ( 3
√
n)2

(1)

where A corresponds to the total area of the externally vis-

ible faces of the solid and n is the total number of voxels.

Intuitively, as a shape becomes less compact, there are fewer

connections between voxels, and A increases, causing Cd to

decrease. The main advantages of compactness are: its ease

of computation for voxel data; and having a range between

0 and 1, thereby removing the need for any external normal-

ization factor. Its main limitation is that distances between

voxels are not modeled.

Ratio of convex hull volume to brain volume. For each

patient, we compute the convex hull that contains all of the

lesion voxels. Then we use the volume ratio of the lesion

convex hull to the brain as a measurement of lesion disper-

sion. The rationale for this measure is that using the lesions

to form a convex hull defines a region that is more likely to

be impacted by the visible damage than the areas outside of
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the convex hull. The brain volume acts as a normalization

factor. This measure is the only one among the four in this

study that is region-based.

Euclidean distance from a fixed reference point. To

quantify the lesion dispersion using distance, we compute

the mean, variance, entropy and skewness of the distribu-

tion of the 3D Euclidean distance between each lesion voxel

and a fixed reference point. The mean and variance are com-

puted from the distances directly, whereas the entropy and

skewness are computed from a histrogram of the distances.

We have tested a number of different reference points for

our measurement, including the centroid of the brain, sev-

eral extremal points, and points in-between. We observe

that the results are dependent on the location of the refer-

ence point, and that the center point of the brain defined on

the largest slice, but projected onto the most inferior slice,

yields the strongest correlation to EDSS. In order to account

for natural variations in brain size among different patients,

we apply principle components analysis to the brain vox-

els to compute the anterior-posterior, left-right and superior-

inferior axes for each patient. The maximum extent along

each direction is then used to normalize the lesion distances

along the same direction. Mathematically speaking, we use

Equation 2 to compute the normalized distance beween the

ith lesion voxel and the reference point r:

dir =

√
(
xi − xr

xb
)2 + (

yi − yr
yb

)2 + (
zi − zr

zb
)2. (2)

where (xi, yi, zi) are the coordinates of the lesion voxel,

(xr, yr, zr) are the coordinates of the reference point, and

xb, yb, and zb are the maximum brain extents in the anterior-

posterior, left-right and superior-inferior directions respec-

tively.

Pair-wise Euclidean distances analysis. To have a

distance-based measure that is independent of any reference

points, we compute the pair-wise Euclidean distances of le-

sion voxels in each patient. We measure the mean, variance,

entropy and skewness of the distribution of the pair-wise

distances. The mean and variance are computed from the

distances directly, whereas the entropy and skewness are

computed from a histogram of the distances. Similarly to

the fixed-point method, the distances are normalized to the

brain extents of each patient.

2.3. Statistical analysis

We analyze the results to investigate if there is a statisti-

cally significant relationship between lesion dispersion and

EDSS and determine whether such dispersion has the po-

tential to provide information that is additional to and in-

dependent from lesion volume. First, we compute Pearson

and Spearman correlations to investigate the relationships

between lesion dispersion, EDSS, and total lesion volume

(normalized by intradural volume computed using a method
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Figure 2: Relation between total lesion volume (normalized

by intradural volume) and EDSS.

based on [7]). The Pearson method assumes a linear rela-

tionship, whereas the Spearman method is a rank correla-

tion that does not assume any particular type of relation-

ship. The p-values of both correlations are computed to

test for statistical significance. For this study we make a

general assumption of linearity, therefore any discussion of

correlation can be taken to mean Pearson correlation unless

otherwise specified, and the Spearman values are provided

primarily for completeness. Since we have three variables,

in the next step, we use regression analysis to investigate

whether there is a potentially meaningful relationship be-

tween lesion dispersion and EDSS, independent of total le-

sion volume. Linear regression analysis assumes that the

dependent variable is a linear combination of the other vari-

ables, and it helps us understand how the typical value of the

dependent variable (EDSS) changes when either one of the

independent variables (lesion dispersion or total lesion vol-

ume) is varied, while the other independent variable is held

fixed [11]. We compute two multiple regressions: one pre-

dicting EDSS using only volume as the predictive variable

and a second regression using both volume and dispersion

as the predictive variables. After constructing regression

models, the statistical significance of the estimated parame-

ters is checked by an F-test of the overall fit.

3. Results

3.1. Total lesion volume normalized by intradural
volume

To establish a baseline of clinical significance, we first

analyze the total lesion volume, normalized by intradural

volume to minimize the influence of head size. This mea-
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Table 1: Correlation values in the sample of 24 patients (13 RRMS, 11 SPMS), between EDSS and normalized total lesion

volume (V), compactness (C), ratio of lesion convex hull (RCH) to brain volume, mean, variance, skewness and entropy of the

distribution of Euclidean distances from a fixed point (MED, VED, SHED, EHED), mean, variance, skewness and entropy of

pair-wise Euclidean distances between lesion voxels (MPWED, VPWED, SHPWED, EHPWED). The statistically significant

correlations (p< 0.05) are in bold.

Measures

correlation with EEDS correlation with V
Significance of adding

the measure to the linear

regression of E on V
Pearson Spearman Pearson Spearman

V r = 0.47 r = 0.44 - - -

p = 0.02 p = 0.02
C r = 0.45 r = 0.35 r = 0.71 r = 0.82 p = 0.45

p = 0.02 p = 0.08 p = 7×10−5 p = 2×10−6

RCH r = 0.49 r = 0.44 r = 0.77 r = 0.81 p = 0.29
p = 0.01 p = 0.02 p = 9×10−6 p = 2×10−6

MED r = 0.001 r = 0.005 r = 0.26 r = −0.09 r = 0.64
p = 0.99 p = 0.98 p = 0.20 p = 0.64

VED r = 0.57 r = 0.57 r = 0.11 r = 0.25 p = 0.0004
p = 0.003 p = 0.003 p = 0.59 p = 0.23

SHED r = -0.48 r = −0.38 r = -0.42 r = −0.33 p = 0.06
p = 0.01 p = 0.06 p = 0.04 p = 0.11

EHED r = 0.54 r = 0.39 r = 0.44 r = 0.58 p = 0.02
p = 0.006 p = 0.05 p = 0.02 p = 0.02

MPWED r = 0.47 r = 0.52 r = 0.44 r = 0.50 p = 0.08

p = 0.01 p = 0.008 p = 0.02 p = 0.01
VPWED r = −0.28 r = −0.20 r = −0.32 r = -0.43 p = 0.57

p = 0.17 p = 0.33 p = 0.12 p = 0.03
SHPWED r = −0.29 r = −0.25 r = −0.31 r = -0.65 p = 0.50

p = 0.15 p = 0.22 p = 0.14 p = 7×10−4

EHPWED r = -0.45 r = -0.40 r = -0.62 r = -0.75 p = 0.31

p = 0.02 p = 0.04 p = 0.001 p = 2×10−5

sure has a mean of 0.03, standard deviation of 0.03, and

range of 2.8×10−4 – 0.14. Figure 2 shows the relation

between total lesion volume and EDSS. Each point repre-

sents a patient in this graph and the line is the best fit to the

data given by the linear regression of EDSS on total lesion

volume. The Pearson and Spearman correlations between

EDSS and volume are 0.47 (p= 0.02) and 0.44 (p= 0.02),

which are within the range of published values [1]. The

results indicate that the EDSS has a significant linear rela-

tionship (p< 0.05) with volume.

3.2. Compactness

To quantify the strength of the relationships be-

tween compactness, EDSS and lesion volume, we cal-

culate the correlations between compactness and EDSS

(r = 0.45, p= 0.02), and compactness and total lesion vol-

ume (r = 0.71, p= 7.3×10−5). Detailed results are provided

in Table 1. The Pearson correlation between EDSS and

compactness is significant and comparable to that between

EDSS and volume, and shows that patients with lower com-

pactness (i.e., more disconnectedness) tend to have more

disability. However, the correlation between compactness

and volume is high, and statistically significant, which

means that in terms of a linear relationship, these two vari-

ables seem to be strongly dependent. Adding compactness

to the linear regression model of EDSS on volume is not

statistically significant (p= 0.51). Therefore, there does not

seem to be a linear relationship between compactness and

EDSS that is independent of volume.

3.3. Ratio of convex hull (RCH) volume to brain
volume

As shown in Table 1, the ratio of lesion convex hull

volume to brain volume is correlated with EDSS (r = 0.49,

p= 0.01), but again, like compactness, the correlation be-

tween total lesion volume and RCH is strong (r = 0.79,

p= 3×10−6). As a result, even though the correlation be-

tween RCH and EDSS is significant, adding RCH to the lin-

276



0 50 100 150 200 250 300
1

2

3

4

5

6

7

8

Variance of Euclidean Distances from a Fixed Point

ED
SS

(a)

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18  

Variance of Euclidean Distances from a Fixed Point

 

N
o

rm
al

iz
ed

 T
o

ta
l L

es
io

n
 V

o
lu

m
e

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

(b)

Figure 3: Relationship between lesion volume, variance of Euclidean distances from a fixed point (VED), and EDSS; a)

approximate linear relationship between EDSS and VED. b) EDSS values are shown using a range of colors (dark blue and

brown correspond to 2 and 8, respectively). For the same volume range, EDSS generally increases as VED increases.

ear regression model of EDSS on volume is not (p= 0.29),

and we cannot conclude that RCH is informative about MS

disability independent of total lesion volume.

3.4. Euclidean distance (ED) from a fixed reference
point

Table 1 contains the correlation coefficients and p-values

that relate EDSS to the mean and variance of Euclidean

distance (VED and MED), skewness and entropy of the

histogram of Euclidean distance (SHED and EHED) and

total lesion volume (V). The results show that the EDSS

values are significantly correlated with VED (r = 0.57,

p= 0.003) and EHED (r = 0.54, p= 0.006), with both cor-

relations being higher than the volume-EDSS correlation

(r = 0.47, p= 0.02). In addition, V and VED are not cor-

related (p= 0.59) which means these variables are indepen-

dent for this data set. However, EHED is correlated with

V (p= 0.02). More interestingly, the p-values from the re-

gression analysis show that adding VED to the regression

model of EDSS on V is statistically significant (p= 0.0004),

meaning that EDSS and VED are significantly related even

after adjusting for V. The same observation can be made

for EHED since adding it to the regression model is statis-

tically significant (p= 0.02). The left graph in Figure 3 il-

lustrates the approximate linear relationship between EDSS

and variance of Euclidean distances (VED) and the right di-

agram shows the relationship between EDSS, volume and

VED values using a range of colors (from dark blue, which

corresponds to 1.5, to brown, which corresponds to 8). The

color of each point represents the EDSS score of that pa-

tient. For improved visualization of the overall trends, we

interpolate the EDSS values and display them as a color

grid in the background. The right graph shows that for the

same volume range, EDSS generally increases with lesion

dispersion.

3.5. Pair-wise Euclidean distances (PWED)

Table 1 contains the correlation coefficients and p-values

that relate EDSS to the mean and variance of pair-wise Eu-

clidean distances (MPWED and VPWED), skewness and

entropy of the histogram of the pair-wise Euclidean dis-

tances (SHPWED and EHPWED) and total lesion vol-

ume (V). The EDSS values are correlated with MPWED

(r = 0.47, p= 0.01) and EHPWED (r = -0.45, p= 0.02). The

MPWED-EDSS correlation is comparable to the volume-

EDSS correlation. However, volume is correlated to MP-

WED (r = 0.44, p= 0.02), and adding MPWED to the lin-

ear regression model of EDSS on volume is not statistically

significant (p= 0.08), which means this variable is not inde-

pendent of volume for this data set.

4. Discussion and conclusion
In this study we computed the spatial dispersion of le-

sions in the MRI scans of 24 MS patients using different

measures. Comparing these values to EDSS and total le-

sion volume, we have found that there is a potentially mean-

ingful correlation between patient disability and distance-

based measurements of lesion dispersion. For quantifying
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lesion dispersion, we used one connectedness-based mea-

sure (compactness), one region-based measure (ratio of le-

sion convex hull to brain volume) and two distance-based

measures (Euclidean distance from a fixed point and pair-

wise Euclidean distances). In this data set, we observed that

for describing lesion dispersion in MS patients the distance

factor plays a more important role compared to connected-

ness and convex region size. In particular, the variance of

Euclidean distance from a fixed point provides new infor-

mation about the severity of MS that is independent from

and potentially more sensitive than total lesion volume.

The two distance-based measures that we tested have

several components each, which may raise the concern of

a statistical chance finding resulting from multiple compar-

isons. If we apply Bonferroni correction to the 3rd and

4th approaches which have 4 related tests each, we obtain

a new significance value of (0.05/4 = 0.0125). Our most

promising result (variance of distances from a fixed point)

yielded a p-value of 0.0004, which is well below the cor-

rected threshold. From these preliminary results we can

conclude that distance-based measures of lesion dispersion

hold some promise as surrogate markers of MS disability.

Further work on larger patient samples is needed to confirm

these findings.
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