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1. ABSTRACT

The choice of 3D shape representation for anatomical structures determines the effectiveness with which segmen-
tation, visualization, deformation, and shape statistics are performed. Medial axis-based shape representations
have attracted considerable attention due to their inherent ability to encode information about the natural
geometry of parts of the anatomy. In this paper, we propose a novel approach, based on nonlinear manifold
learning, to the parameterization of medial sheets and object surfaces based on the results of skeletonization.
For each single-sheet figure in an anatomical structure, we skeletonize the figure, and classify its surface points
according to whether they lie on the upper or lower surface, based on their relationship to the skeleton points.
We then perform nonlinear dimensionality reduction on the skeleton, upper, and lower surface points, to find
the intrinsic 2D coordinate system of each. We then center a planar mesh over each of the low-dimensional
representations of the points, and map the meshes back to 3D using the mappings obtained by manifold learn-
ing. Correspondence between mesh vertices, established in their intrinsic 2D coordinate spaces, is used in order
to compute the thickness vectors emanating from the medial sheet. We show results of our algorithm on real
brain and musculoskeletal structures extracted from MRI, as well as an artificial multi-sheet example. The main
advantages to this method are its relative simplicity and noniterative nature, and its ability to correctly compute
nonintersecting thickness vectors for a medial sheet regardless of both the amount of coincident bending and
thickness in the object, and of the incidence of local concavities and convexities in the object’s surface.

2. INTRODUCTION

As radiologists continue the transition to examining medical images and anatomical structures in 3D, the choice
of 3D shape representation for anatomical shapes is important. A good choice of representation enables effective
segmentation, visualization, deformation, and shape statistics in research studies. Medial axis-based represen-
tations, inspired by Blum’s development of the medial axis transform (MAT),1 have attracted considerable
attention due to their inherent ability to capture object bending, elongation, and thickness in a coordinate sys-
tem local to the object.2, 3 Furthermore, medial axis-based representations inherently decompose shapes into the
intuitive notions, so that each characteristic can be studied separately, either qualitatively or quantitatively.4

Medial axis-based representations such as medial patches5 and m-reps3 typically decompose an anatomical
structure into one or more single-figural objects. Each single figural object is represented using a connected set
of loci (medial nodes in medial patches nomenclature; atoms in m-reps) which lie within the object on or near
its medial surface forming a medial sheet, and a set of thickness vectors (medial patches nomenclature; spokes
in m-reps) which emanate from the medial nodes and terminate on the surface of the object. A medial shape
representation for an anatomical structure can be computed directly from a grayscale volumetric medical image
(e.g. CT, MRI), effectively segmenting the structure from the image as the shape representation is computed.3

More typically, a segmentation step precedes the computation of the medial shape representation, which is based
on a 3D binary image of the anatomical structure (i.e. with 1s representing the object, and 0s elsewhere). Two
problems then arise: Given a binary image of an anatomical structure of interest, (1) how to position the loci
that form the medial sheet, and (2) in which direction to emanate each thickness vector from each medial node?

In this paper, we explore the utility of manifold learning-based surface parameterization in solutions to both
of the aforementioned problems. When addressing the problem of how to find the medial loci, skeletonization
algorithms such as the MAT1 and others6–9 perform a transformation of the binary representation of the object
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boundary, yielding the medial loci. Another approach is to begin with a set of loci in the form of nodes of a mesh
representing a medial sheet, and deform the mesh such that the nodes become medial (or near-medial) loci of
the binary object.3, 10 Both approaches have disadvantages. Skeletonization results in a dense set of 3D points,
whereas what is generally required is a simpler mesh sampled from the surface implied by the skeleton. Initializing
a mesh and deforming it to the medial region of an object yields the desired data structure, but possibly at the
cost of true medialness of the mesh. The approach taken in this paper is a compromise between these two
approaches. We perform skeletonization of the shape in order to find its precise medial loci, and then apply
manifold learning techniques (e.g. ISOMAP,11 Locally Linear Embedding (LLE),12 Laplacian Eigenmaps13)
in order to discover the intrinsic 2-dimensional (i, j) coordinate system of the medial surface sampled by the
skeleton points. These techniques are related to surface-flattening techniques applied to arbitrary meshes14 and
voxel-based surfaces15 (the core of the latter cited work being essentially the same as ISOMAP16). The loci are
then determined by overlaying a regular lattice of nodes on the flattened medial surface.

(a) (b)

(c) (d)

Figure 1. Illustration, in 2D, of problems with computing thickness vectors to be normal to the surface (black) or normal
to the medial sheet (red). (a) An object with high curvature and high thickness causes thickness vectors (blue) normal
to the object surface to fail to intersect the medial sheet. Similarly, thickness vectors (green) normal to the medial sheet
can fail to intersect with the object surface. (b) By parameterizing the surfaces according to their intrinsic coordinate
system, this problem is avoided (red vectors shown emanating from the medial sheet to the object surface). (c) A bump
on an object causes thickness vectors (blue) normal to the object surface to cross. (d) Surface parameterization according
to the intrinsic coordinate system solves this problem.

To address the second problem of specifying the direction of each of the thickness vectors, we propose an
approach that splits the original surface into upper and lower sections (relative to the medial sheet). We
parameterize each section, also using a manifold learning approach, using a regular lattice of the same resolution
as that which parameterized the medial sheet. Thickness vectors emanating from point (i, j) on the medial sheet
then terminate at points (i, j) on the upper and lower surfaces. That is, vectors emanating from nodes on the
medial surface terminate at corresponding nodes on the upper and lower surfaces, where the correspondence
is determined in the intrinsic 2D coordinate systems of the surfaces. The motivation behind this approach is
illustrated in figure 1. When an object has a region of high thickness and also of high curvature, such as may
occur in the intestinal tract in virtual colonoscopy, or in the major blood vessels, thickness vectors computed to
be normal to the surface (as in m-reps) may fail to encounter the medial sheet, and conversely, vectors normal
to the medial sheet may fail to encounter the intended region of the object surface. Also, concavities in real
anatomical objects can cause normal thickness vectors to cross. Several attempts have been made to solve this
problem in previous work. Oda et. al.17 use a spring model to modify directions of planes cutting through
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the colon in a virtual colonoscopy study, the aim being to minimize the total length of springs. This approach
is an iterative technique, and the authors state that “Updating these [plane] parameters is performed by an
iterative process that is terminated if the number of iterations reaches a predefined value.” The approach taken
in this work, by contrast, is noniterative and arguably simpler. Wang et. al.18 propose a solution that models
gastrointestinal tract cross sections as electrical force lines. This approach is computationally complex, to the
extent where the authors suggest means of approximating their full algorithm, at the expense of a guarantee
that the cross sections do not intersect.

The remainder of this paper is organized as follows. In section 3 we give the details of a generic process
for using manifold learning to parameterize voxel based surfaces. We show how this process can be applied to
the skeleton, and lower and upper surfaces of an object in order to parameterize these surface and establish
meaningful correspondence between the nodes. In section 4 we illustrate the results of applying our method to
several real anatomical structures extracted from MRI data, and in section 5 we give some concluding remarks
and future directions of possible research based on this work.

3. METHODS
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Figure 2. Flowchart depicting the overall process used in this work. Starting with a binary image containing an
anatomical structure, we first skeletonize the object. If the skeleton contains N figures, the skeleton points are clustered
into N groups; one group per figure. Points on the surface of the binary object are classified, based on the position of
the skeleton, as belonging to either the upper or the lower surface of the object. Next, the surfaces represented by the
skeleton, upper, and lower surface points are all parameterized via nonlinear dimensionality reduction (see figure 3). This
yields, for each figure, meshes for the skeleton, the upper surface, and the lower surface. Correspondence between nodes
in these meshes is established in the 2D coordinate systems established during nonlinear dimensionality reduction, and
this correspondence is used to compute the thickness vectors.

The overall process followed in this paper is described in figure 2. Given a binary image of an anatomical
structure, its skeleton is computed and pruned by an applicable method.6 Skeleton points are then clustered
such that each cluster contains a single medial sheet. To do this, we eliminate all voxels having more than 8
26-connected neighbours, and find the resulting connected components, treating each component as a separate
sheet. This is justified because it is generally agreed upon that a skeletonization algorithm should yield a single-
pixel-wide connected skeleton.6 During the clustering process, we obtain for free the loci of junction points
of the sheets: the loci of the removed voxels. These can be used, for example, to locate overloaded nodes at a
connection curve in medial patches,5 or hinge atoms in multi-figural m-reps.19 Thus we have a set of clusters of
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Figure 3. The process used to parameterize a 2D surface embedded in 3D, given a set of disconnected 3D points sampled
from the surface. Given a binary image depicting a surface, 3D points are extracted that lie on that surface. Next, these
points serve as input to an algorithm for nonlinear dimensionality reduction (ISOMAP11 is used in this work) in order to
map the points into their intrinsic 2D space. Points are then sampled from this 2D space based on a regular lattice, and
these point samples are mapped back to 3D using information derived from the mapping discovered by ISOMAP. The
mapped 3D points form the vertices of a surface mesh, and the edges of the mesh connect neighbours according to the
2D lattice.

medial voxels, where the voxels in each cluster are taken to be samples from a single (likely non-planar) surface
in 3D, corresponding to a single-figural part of the anatomical structure. Next, we assign a label to each object
surface voxel as belonging to the upper or lower surface of the object, depending on which side of the object’s
skeleton the point lies. Thus, for each figure, we have three sets of 3D points: medial surface, upper surface, and
lower surface. Next, we learn the parameters of the intrinsic 2D coordinate systems of the surfaces from which
each of these point sets were sampled via nonlinear dimensionality reduction. This process is depicted in figure 3
and is discussed below; for the moment we will treat this as a black box. The output of surface parameterization
is, for each figure, three meshes, each with N ×M vertices, depicting the medial surface, the upper surface, and
the lower surface. Remembering that each 3D mesh vertex corresponds to a set of 2D (i, j) parameters obtained
during manifold learning, we form thickness vectors emanating from each vertex (i, j) on the medial surface to
corresponding vertices (i, j) on the upper and lower surfaces. We have thus computed the basic building blocks
for a medial representation of the figure: a medial sheet consisting of a set of connected nodes, and a set of
thickness vectors emanating from each of the nodes to the surface.
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Figure 4. Pictorial illustration of surface parameterization. (a) Collection of 3D points (red) sampled from a surface.
(b) Points mapped to 2D via mapping M obtained from manifold learning. (c) Regular mesh created within the surface
in a 2D (i, j) coordinate system. (d) Mesh and (i, j) parameterization mapped back to 3D using inverse of M .

We now turn our attention to the surface parameterization process depicted in figure 3. Given a 3D binary
image depicting a surface of interest, we extract the 3D points lying on the surface. Next, we perform nonlinear
dimensionality reduction, also known as manifold learning, using the ISOMAP method.11 ISOMAP forms a
neighbourhood graph with the 3D points as nodes, with edges between each node and its nearest neighbours
in 3D. The edges are weighted according to the euclidean distance between neighbouring nodes. The geodesic
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distance between each pair of points is computed by integrating the graph edge weights along the shortest path
between the points. A distance matrix is thus formed and used in classical multi-dimensional scaling in order to
perform dimensionality reduction preserving inter-point geodesic distances, both locally and globally. Here, we
use ISOMAP to reduce the dimensionality of the 3D points P to 2D points Q, illustrated in figure 4. Because
ISOMAP is a geodesic distance-preserving mapping, the resulting 2D coordinates are intrinsic to the 2-manifold
sampled by the skeleton points. Next, we center an N ×M regular lattice of 2D nodes on the region containing
points Q. This is done by setting a margin size for the region, and overlaying the regular lattice to fill the entire
region specified by the margin size. The motivation for the use of a margin is that in practice, we do not want
medial or surface nodes to fully extend to the edges of the skeleton or upper and lower surfaces. These nodes
form vertices of a quad mesh where edges join 4-connected neighbours. Lastly, each vertex V of the mesh is
mapped back to 3D by trilinear interpolation of points P corresponding to neighbours N ∈ Q of V . The end
result of this process is that mesh vertices have equal geodesic spacing along the surface.

4. RESULTS

(a) (b)

(c) (d)

Figure 5. (a) Left thalamus binary image (blue) with skeleton points (green) shown within. (b) Mesh resulting from
medial sheet parameterization of (a). (c),(d) Similar to (a) and (b), for left caudate nucleus image.

Figure 5 illustrates the parameterization of the medial surfaces of images of the thalamus and caudate nucleus
segmented from an MRI of the brain. Specifically, this figure shows the result of applying the process given in
figure 3 to a binary image containing a single medial sheet. Parts (a) and (c) show the skeleton points in green,

Proc. of SPIE Vol. 6512  65120X-5



and parts (b) and (d) show the meshes resulting from medial sheet parameterization on a 6 × 8 grid. Manifold
learning was conducted with k-ISOMAP,11 k = 8.

(a) (b)

(c) (d)

Figure 6. (a) A left caudate nucleus segmented from an MRI of the brain, rendered semitransparently as an isosurface.
The medial sheet is rendered as a surface within, with thickness vectors emanating to the parameterized object surface.
(b) Similar to (a), for a supraspinatus muscle (part of the rotator cuff in the shoulder) extracted from MRI. (c) The
parameterized surfaces of the caudate nucleus shown. The top surface is made translucent and the parameterized skeleton
is removed for clarity. (d) Similar to (c), for the supraspinatus.

Figure 6 illustrates the results of applying the entire process given in figure 2 to images containing a caudate
nucleus and a supraspinatus muscle (a muscle that forms part of the rotator cuff in the shoulder). In both
cases, k-ISOMAP11 was used, with k = 12. Note the even, regular distribution of medial and surface nodes
that is a consequence of spacing them along equal geodesic distances along each surface. It is due to this equal
geodesic spacing, in combination with the correspondence established in the 2D coordinate systems intrinsic to
each surface, that the thickness vectors emanating from the medial surface always contact the correct object
surface and do not cross.

Figure 7 is an artificial example illustrating the parameterization of an object’s skeleton in the multi-figural
case. Figure 7(b) shows results obtained for an artificial multi-sheet skeleton (a), using ε-ISOMAP,11 ε = 4.
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(a) (b)

Figure 7. (a) A multi-sheet skeleton of an artificial object. (b) The result of medial sheet parameterization after
clustering. Different medial sheets are indicated with different colours.

5. CONCLUSIONS

In this work, we gave a preliminary demonstration of the utility of manifold learning for the computation of the
fundamental components of a medial shape representation. The results of our work illustrate that the intrinsic
2D coordinate systems learned by nonlinear dimensionality reduction are useful both in distributing medial and
surface nodes with equal geodesic spacing, and also for establishing correspondence, in the 2D domain, between
medial nodes and corresponding surface nodes. This correspondence is very useful in specifying the start and
end point of thickness vectors emanating from the medial sheet to the object surface. Because of the equal
geodesic spacing of the nodes, this approach overcomes problems of missed target and crossing normals that
arise when computing thickness vectors to be normal either to the medial sheet or to the object surface, as is
typical practice. Furthermore, this approach is noniterative and simple to implement. Future work includes
research into automatic selection of manifold learning parameters, such as the number of nodes to use for each
medial sheet, the choice of k-ISOMAP versus ε-ISOMAP, and the specific setting of k or ε for a given figure. It
would also be worthwhile to assess the utility of this approach in studies of vasculature and the gastrointestinal
tract, where situations involving the coincidence of high bending and thickness are likely to occur.
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