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Abstract 
Robust, automatic segmentation and analysis of 

medical images requires powerful and flexible models 
of anatomical structures. We present a multiscale, 
medial-based approach to shape representation and 
controlled deformation in an effort to meet these 
requirements. We use medial-based profiles for shape 
representation, which follow the geometry of the 
structure and describe general, intuitive, and 
independent shape measures (length, orientation, and 
thickness). Controlled shape deformations (stretch, 
bend, and bulge) are obtained either as a result of 
applying deformation operators at certain locations 
and scales on the medial profiles, or by varying the 
weights of the main variation modes obtained from a 
hierarchical (multiscale) and regional (multi-location) 
principal component analysis of the medial profiles. We 
demonstrate the ability to produce controlled shape 
deformations on a medial-based representation of the 
corpus callosum. Furthermore, we present results of 
segmenting the corpus callosum in 2D mid-sagittal 
MRI slices of the brain. 

1 Introduction 
Controlling the deformations of an object’s shape in 

a way that is based on the natural geometry of the 
object is highly desirable in image interpretation tasks, 
especially in the segmentation of natural objects from 
medical images. This intuitive deformation ability 
reflects the flexibility of clay to be shaped in a 
sculptor’s hands and naturally lends itself to guidance 
by high-level controllers. Furthermore, the performance 
of the controllers can be greatly enhanced by keeping 
the deformations consistent with prior knowledge about 
the possible object shape variations. 

Most deformable shape models (see [1] for a 
comprehensive survey) are boundary-based and 
although provide excellent local shape control, lack the 
ability to undergo intuitive global deformation. As a 
result, it is difficult to incorporate intelligent 
deformation control operating at the right level of 
abstraction into the typical deformable model 

framework of energy minimization. Consequently, 
these models remain sensitive to initial conditions and 
spurious image features in image interpretation tasks. 

Various hierarchical versions of boundary-based 
deformable models have been developed [2-5] but 
again fail to provide a natural global description of an 
object - the multiscale deformation control is 
constructed upon arbitrary boundary point sets and not 
upon object-relative geometry. Several global or 
“volume-based” shape representation or deformation 
mechanisms do exist [6-10] but are limited either by 
the type of objects they can model, or the type and 
intuitiveness of the deformations they can carry out. 
They are also typically not defined in terms of the 
object but rather the object is unnaturally defined (or 
deformed) in terms of the representation or deformation 
mechanism. 

Deformable models based on medial shape 
representations of objects are emerging as a powerful 
alternative to boundary-based and volume-based 
techniques, primarily led by the work of Pizer’s group 
at the University of North Carolina at Chapel Hill [11-
13]. Medial representations provide both a local and 
global description of shape. Deformations defined in 
terms of a medial axis are natural and intuitive and can 
be limited to a particular scale and location along the 
axis. 

In this paper, we utilize medial-based profiles for 
shape representation and define deformation operators 
in terms of these shape profiles. Our goal is the ability 
to intelligently control the different types and extents of 
model deformations during the model-to-data fitting 
process in an effort to focus on the extraction of stable 
image features before proceeding to object regions with 
less well-defined features. 

To this end, we construct a model of an anatomical 
structure with a set of profiles that are based on the 
medial axis of the structure, where each profile 
describes general and intuitive shape measures (length, 
orientation, and thickness). Structure deformations 
(stretch1, bend, and bulge2) are then implemented as 
deformation operators acting on the shape profiles, 
                                                           

1 Stretch or compress. 
2 Bulge or squash. 
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where each operator can have a different shape and 
scale and can be applied at any point along a profile.  

In addition to the general deformation operators, we 
would also like to use as much knowledge as possible 
about the object itself and to generate statistically-
proven feasible deformations from a training set. We 
would like to control these statistical deformations 
locally along the medial shape profiles to support our 
goal of intelligent deformation scheduling. Since 
general statistically-derived shape models only produce 
global shape variation modes [14-15], we have 
developed spatially-localized feasible deformations at 
desired scales by utilizing hierarchical (multiscale) and 
regional principal component analysis to capture shape 
variation statistics. 

In the following sections, we demonstrate the 
ability to produce controlled shape deformations by 
applying them to medial-based representations of the 
corpus callosum (CC), derived from 2D mid-sagittal 
MRI slices of the brain. We begin by describing the 
generation and use of medial-based profiles for shape 
representation and describe a set of general operators 
that act on the medial shape profiles to produce 
controlled shape deformations. We then present a 
technique for performing a multiscale multi-location 
statistical analysis of the shape profiles and describe 
statistics-based deformations based on this analysis. In 
Section 3, we present a simple application of the 
controlled shape deformations and demonstrate their 
use in an automatic medical image analysis system. In 
Section 4, we conclude the paper and provide a brief 
discussion of several outstanding issues and future 
work. 

2 Shape Representation and Deformation 
with Medial Profiles 

To control shape deformation intuitively requires a 
shape representation that, among other things, describes 
global shape variation intuitively. To meet this 
requirement, we represent the shape with a set of 
profiles that are based on a sampled medial axis of an 
object. Each profile captures an intuitive measure of 
shape: length, orientation, and thickness. Once the 
profiles are constructed, various deformation functions 
or operators can be applied to a profile, producing 
intuitive, controlled deformations: stretching, bending, 
and bulging. 

2.1 Medial Profiles for Shape representation  
We use a boundary representation of an object to 

generate the medial-based profiles. Generation of the 
profiles begins with the extraction of a sampled (semi-
automatically) pruned skeleton of the object to obtain a 
set of medial nodes. Four medial profiles are 

constructed: a length profile � �L m , an orientation 
profile � �O m , a left (with respect to the medial axis) 
thickness profile � �

lT m , and a right thickness profile 
� �
rT m , where 1,2, ,m N� � , N  is the number of 

medial nodes, and nodes 1 and N are the terminal 
nodes. The length profile represents the distances 
between consecutive pairs of medial nodes, and the 
orientation profile represents the angles of the edges 
connecting consecutive pairs of medial nodes 
(measured with respect to the horizontal). The 
thickness profiles represent the distances between 
medial nodes and their corresponding boundary points 
on both sides of the medial axis (Figure 1). 
Corresponding boundary points are calculated by 
computing the intersection of a line passing through 
each medial node in a direction normal to the medial 
axis, with the boundary representation of the object. 
Example medial profiles are shown in Figure 2. 
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Figure 1.  Diagram of shape representation. 
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Figure 2. Example medial shape profiles: (a) length 
profile � �L m , (b) orientation profile � �O m , (c) left 
thickness profile � �

lT m , and (d) right thickness 
profile � �

rT m . 



2.2 Shape Reconstruction from Medial Profiles 
To reconstruct the object’s shape given its set of 

medial profiles, we calculate the positions of the medial 
and boundary nodes by following these steps: 
 
1. Specify affine transformation parameters: 

orientation angle � , translation values � �,x yt t , 

and scale � �,x ys s . 
2. Using medial node 1 as the base or reference node, 

place it at location � �1 ,x yx t t� .  
3. Repeat steps 4 and 5 for 1,2, ,m N� � . 
4. Compute the locations l

mx  and r
mx  of the 

boundary points l  and r  at either side of the thm  
medial node (Figure 1) as 

� �

� �� �
� �� �

cos
2
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2

x
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m m

y

s O m
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s O m

�
�

�
�
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and similarly, 
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5. If m N� , compute the location 1mx �
 of the next 

medial node 1m �  as  

� �

� �� �

� �� �1

cos

sin
x

mm
y

s O m
x x L m

s O m

�

�
�

�� ��� ��� � �� �� ���� �
.(3) 

 
An example shape reconstruction is shown in 

Figure 3. Note that we have generalized the 
reconstruction algorithm so that any medial node may 
serve as the base or reference node. 

 

 
Figure 3. Object reconstruction resulting from the shape 
profiles in Figure 2. 

2.3 Shape Deformations Using Medial-Based 
Operators 

Once the shape profiles have been generated, we 
can construct deformation operators and apply these 
operators to the shape profiles. This results in intuitive 
deformations of the object upon reconstruction. That is, 
by applying an operator to the length, orientation, or 

thickness shape profile, we obtain a stretch, bend, or 
bulge deformation, respectively. 

Each deformation operator is implemented by 
defining a medial-based operator profile, � �k m , of a 
particular type (Figure 4) and specifying an amplitude, 
location, and scale.  

 

(a) (b) (c) (d) (e) 

Figure 4. Examples of operator types: (a) Triangular, 
(b) Gaussian, (c) flat, (d) bell, and (e) cusp [16]. 

 
The operator profile is then added to (or blended 

with) the medial shape profile corresponding to the 
desired deformation. For example, to introduce a bulge 
on the right boundary, an operator profile with a 
specific amplitude, type, location, and scale is 
generated and added to the right thickness medial 
profile � �

rT m  to obtain � � � �
rT m k m�  (Figure 5). 
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Figure 5. Introducing a bulge on the right boundary by 
applying a deformation operator on the right thickness 
profile: (a) � �

rT m  before and (c) after applying the 
operator. (b) The reconstructed shape before and (d) 
after the operator.  

 
In general the application of a deformation operator 

� �k m  alters the desired shape profile according to 
� � � � � �
d d dlst dlstp m p m k m�� �  (4) 

where  
p  shape profile 
d   deformation type (stretch, bend, left/right bulge), 

i.e. � � � � � � � � � �� �: , , ,l r
dp m L m O m T m T m  

p   average shape profile 
k   operator profile (with unity amplitude) 



l   location 
s   scale 
t   operator type (Gaussian, triangular, …, etc.) 
�   operator amplitude. 
 

Altering one shape profile only affects the shape 
property associated with that profile and does not affect 
any other object shape properties. For example, 
applying an operator to the orientation profile results in 
a bend deformation only and does not result in a stretch 
or bulge. This implies the ability to perform successive 
operator-based object deformations of varying 
amplitudes, types, locations or scales, which can be 
expressed as 

� � � � � �
d d dlst dlst

l s t
p m p m k m�� ���� . (5) 

Examples of operator-based deformations are 
shown in Figure 6a-d. 
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Figure 6. Examples of controlled deformations: (a)-(c) 
Operator-based bulge deformation at varying locations, 
amplitudes, and scales. (d) Operator-based stretching with 
varying amplitudes over entire CC. (e)-(g) Statistics-based 
bending of the left end, the right end, and the left half of the 
CC. (h) Statistics-based bulge of the left and right thickness 
over the entire CC. (i) from left to right: (1) mean shape, (2) 
statistics-based bending of the left half, followed by (3) locally 
increasing the left thickness using an operator, followed by 
(4) applying an operator-based stretch and (5) an operator 
based bend to the right side of the corpus callosum. 

2.4 Statistical Shape Analysis by Hierarchical 
Regional PCA 

In many applications, prior knowledge about object 
shape variability is available or can be obtained by 
studying a training set of shape examples. The training 
set is typically created by labeling corresponding 
landmark points in each shape example. Principal 

Component Analysis (PCA) is then applied to the 
training set, resulting in a point distribution model 
(PDM) [14]. The PDM describes the main modes of 
variation of the landmark positions and the amount of 
variation each mode explains. A drawback of this 
original approach is that the result of varying the 
weight of a single variation mode generally causes all 
the landmark positions to change. In other words, 
although the original PDM model produces only 
feasible shape deformations, a desirable trait, it 
generally produces global deformations over the entire 
object. 

Our goal is to utilize prior knowledge and produce 
feasible deformations, while also controlling the scale 
and location of these deformations. Towards this end 
we perform a multiscale (hierarchical) multi-location 
(regional) PCA on a training set of medial shape 
profiles.  

To achieve this, we collect spatially corresponding 
sub-profiles from the shape profiles. The length of a 
sub-profile reflects the scale over which the analysis is 
performed. The principal component analysis is now a 
function of the location, scale, and type of shape profile 
(length, orientation, or thickness). Thus, for each 
location, scale, and shape profile type, we obtain an 
average medial sub-profile, the main modes of 
variation, and the amount of variation each mode 
explains. The result is that we can now generate a 
feasible stretch, bend, or bulge deformation at a 
specific location and scale. 

A shape profile can now be written as the sum of 
the average profile and the weighted modes of variation 
as follows 

� � � �
d d dls dlsp m p m M w� �  (6) 

where p ,d , p , � �
dp m , l ,s  are defined in (4),  and 

dlsM  variation modes (columns of M ) for a 
specific d , l , and s , 

dlsw  weights of the variation modes, where the 
weights are typically set such that the variation is 
within three standard deviations. 

For any shape profile type, multiple variation 
modes can be activated by setting the corresponding 
weighting factors to non-zero values. Each variation 
mode acts at a certain location and scale, hence we 
obtain 

� � � �
d d dls dls

l s
p m p m M w� ���  (7) 

In summary, varying the weights of one or more of 
the variation modes alters the length, orientation, or 
thickness profiles and generates statistically feasible 
stretch, bend, or bulge deformations at specific 
locations and scales upon reconstruction. 

Examples of statistics-based deformations are 
shown in Figure 6e-h. 



2.5 Combining Operator- and Statistics-Based 
Deformations 

In general, operator- and statistics-based 
deformations ((5) and (7)) can be combined as 

d d dls dls dlst dlst
l s t

p p M w k�

� ���� � � �� ����� �
�� � .(8) 

It is worth noting that several deformations, whether 
operator- or statistics-based, may spatially overlap 
(something that we currently do not restrict). 
Furthermore, adding profiles of different scales, hence 
different vector lengths, is possible by padding the 
profiles with zeros. 

Figure 6i shows an example of combining 
operator- and statistics-based deformations. 

3 Application and Results 
To demonstrate the potential of our statistics- and 

operator-based controlled deformations, we 
handcrafted a deformation schedule for fitting the CC 
shape model to a mid-sagittal MRI slice of the brain.  
Figure 7 shows the resulting medial shape profiles after 
applying the fitting schedule (compare with the initial 
profiles in Figure 2). The initial and final CC shapes 
are shown in Figure 8. The schedule steps are shown in 
Table 1 and the resulting deformed CC shapes for each 
step of the schedule are shown in Figure 9. 

Furthermore, we present (Figure 10) recent 
automatic segmentation results obtained using an 
intelligent corpus callosum deformable model [17]. 

4 Conclusion 
We have recently constructed a model-based system 

that automatically and robustly interprets medical 
images (i.e. segmentation, registration, matching, 
analysis) by explicitly searching for and fitting to stable 
image features. A key component of this system is the 
ability to intelligently schedule and control the type, 
location, extent, and order of intuitive model 
deformations during the fitting process [17].  In this 
paper we have presented ‘medial profiles’, a medial-
based shape representation that provides this ability. 
Based on these profiles, we are able to construct 
deformation operators and generate intuitive localized 
and multiscale deformation types (stretch, bend, bulge). 
Furthermore, by introducing hierarchical regional PCA 
we are able to perform a multiscale multi-location 
statistical analysis of the shape profiles thus generating 
statistically feasible versions of these deformations. 

To demonstrate our approach, we utilized the 
controlled shape deformations to fit a CC model to a to 
mid-sagittal brain MRI slices both manually and 
automatically. 

We are aware of remaining and interesting issues, 
most of which are currently under investigation and 
research:  
�� For 3D shape representation, we anticipate a 

similar yet more involved scheme of medial-based 
deformation surfaces, operators, and statistical 
analysis. 

�� The boundary near the terminals/end caps of the 
model requires special consideration to prevent 
loss of continuity. We currently interpolate a cubic 
spline through the reconstructed left and right 
boundary points independently, resulting in a loss 
of continuity at the terminals/end caps of the 
model. We are therefore exploring alternative 
boundary representation methods. 

�� Incorporation of boundary-based displacements to 
accommodate objects with irregular boundaries. 

�� Extension of the approach to handle objects with 
multiple medial axes (i.e. objects with protrusions). 

�� Automatic generation of deformation schedules 
using learning algorithms. 
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Figure 7. The resulting medial shape profiles after 
applying the fitting schedule: (a) length profile � �L m , 
(b) orientation profile � �O m , (c) left thickness profile 

� �
lT m , and (d) right thickness profile � �

rT m . 
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1 Translation by (▼74,►24)
2 Rotation by �10º
3 Scaling by 1.2

4 Bend 1 8 2 w=0.5

5 Bend 20 8 2 w=-0.8

6 Bend 22 6 2 w=-0.75

7 Bend 24 4 1 w=2.2

8 Bend 1 4 2 w=1

9 Stretch 6 4 1 w=-1.5

10 Stretch 26 1 1 w=2

11 Left-bulge 15 7 1 w=3

12 Left-bulge 18 3 1 w=2

13 Left-bulge 6 12 1 w=3

14 Left-bulge 5 3 1 w=3

15 Right-squash 9 3 1 w=-1

16 Right-bulge 13 2 1 w=0.5

17 Left-bulge 21 3 Gaussian
�=0.3

18 Left-bulge 21 7 Gaussian
�=0.1

19 Right-squash 24 2 Gaussian
�=-0.5

20 Right-bulge 4 2 Bell
�=1.7

21 Right-bulge 6 3 Gaussian
�=0.4

22 Right-squash 1 3 Gaussian
�=-2.2

23 Right-squash 25 1 Gaussian
�=-0.8

Table 1. Deformation schedule used to fit the 
corpus callosum shape model to the MRI data. 

 
 

Figure 8. Close up of the initial and final stages of the 
handcrafted fitting schedule. 
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Figure 9. Progress of the handcrafted fitting schedule 
(fitting steps are listed in Table 1). 



 

   

   
Figure 10. Example segmentation results (top), also shown (in black) over manually segmented (gray) CC (bottom). 
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