Completing the graphics pipeline and 3D clipping

Richard (Hao) Zhang

Introduction to Computer Graphics
CMPT 361 – Lecture 9
Perspective normalization

- Frustum() maps objects from the perspective view volume to the **left-handed** canonical view volume.

- The projection matrix is:

\[
p' = \begin{bmatrix}
\frac{2 \cdot \text{near}}{\text{right} - \text{left}} & 0 & \frac{\text{right} + \text{left}}{\text{top} + \text{bottom}} & 0 \\
0 & \frac{2 \cdot \text{near}}{\text{top} - \text{bottom}} & \frac{\text{top} - \text{bottom}}{\text{far} - \text{near}} & 0 \\
0 & 0 & -\frac{\text{far} + \text{near}}{\text{far} - \text{near}} & -1 \\
0 & 0 & \frac{2 \cdot \text{far \cdot near}}{\text{far} - \text{near}} & 0
\end{bmatrix}
\]

- The midpoint \(M \) at \(-\text{(near+far)}/2\) is mapped to \((\text{far–near})/(\text{far+near})\), not 0, for foreshortening.
Don’t forget perspective divide

Expression for the y (respectively, x) component in the canonical view volume is really $-y'/z$ (respectively, $-x'/z$)

Need division of $-z$ to normalize w component — this is called perspective division

Points with $z = 0$ are mapped to point at infinity
Where did the view plane go?

- We never specified it …
- Function LookAt() specifies the camera position
- Ortho() and Frustrum() do projection normalization
- When we are in the canonical view volume, just project by ignoring the z values (after visibility)
- Important: LookAt() can be superseded by projection
 - It depends on where the near clipping plane is placed
 - One may “see” behind the camera
Example

LookAt(0.0, 0.0, 0.0, 0.0, 0.0, −10.0, 0.0, 1.0, 0.0); ...

Ortho(−1.0, 1.0, −1.0, 1.0, 1.0, 30.0); ...

with a square in the plane \(z = 1.0 \) which is behind the camera — it is clipped out by near and far planes at −1.0 and −30.0 — **do not see**

\[
\begin{array}{c}
\text{z} \\
\hline
\text{square at 1.0} \\
\hline
\text{eye} \\
\hline
\text{near plane −1.0} \\
\hline
\text{far plane −30.0}
\end{array}
\]
Seeing behind the camera

- Ortho\((-1.0, 1.0, -1.0, 1.0, -2.0, 30.0)\)

 The near clipping plane +2.0 is behind the camera and also the square.

 ** Although the square is also behind the camera, it is mapped into the canonical cube nevertheless and we *can “see” it*.

 If we change \(-2.0\) to \(-0.5\), we will not be able to see the square since it is clipped out by the near clipping plane.

Now change Ortho() all to Frustum(), strange behavior!

- No at 1.0
- Eye
- Near plane –1.0
- Far plane –30.0
 - NO

- Near plane +2.0
- Eye
- Far plane –30.0
 - NO!

- Near plane +0.5
- Eye
- Far plane –30.0
 - Yes!
Positioning of the near plane

- OpenGL has problems in **clipping things behind the camera with perspective projection**

- It is your responsibility to make sure that the near clipping plane is **in front of** the camera (positive “near”)

- Avoid placing near clipping plane behind the camera: why mess it up? 😊
The graphics pipeline

- We have been focusing on the first three boxes
- An expanded view ...
An expanded view

Objects in OCS → Modeling transform → WCS (4D) → Viewing transform → VCS (4D)

Pixels = SCS (2D)

WinCS (3D) → Viewport transform → NDCS (3D) → clipping then perspective ‘/’ → CCS (4D)

OCS: object coordinate system
WCS: world coordinate system
VCS: viewing coordinate system
CCS: clip coordinate system
NDCS: normalized device CS
WinCS: window coordinate system
SCS: Screen coordinate system

February 19, 2018
OpenGL transformation functions

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Functions/Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling transform</td>
<td>Translate(), RotateX(), RotataY(), RotateZ(), Scale() in mat.h</td>
</tr>
<tr>
<td>Viewing transform</td>
<td>LookAt() in mat.h</td>
</tr>
<tr>
<td>Projection transform</td>
<td>Frustum(), Ortho(), Perspective() in mat.h</td>
</tr>
<tr>
<td>Viewport transform</td>
<td>glViewport(x, y, width, height)</td>
</tr>
</tbody>
</table>
Viewport transformation

- Do this after orthographic projection in the canonical view volume: NDCS \rightarrow WinCS

\[
\frac{x - x_{\text{min}}}{x_{\text{max}} - x_{\text{min}}} = \frac{x_v - x_{v\text{min}}}{x_{v\text{max}} - x_{v\text{min}}}
\]
3D clipping

- The Cohen-Sutherland line clipping algorithms and the Sutherland-Hodgeman polygon clipping algorithm work in pretty much the same way

 - 6-bit outcodes instead of 4-bit
 - Line-line intersection in 2D → line-plane intersection in 3D
Line-plane intersection

- Line: \(\mathbf{p}(\alpha) = (1 - \alpha)\mathbf{p}_1 + \alpha \mathbf{p}_2 \)
- Plane: \(\mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) = 0 \)
- To intersect: \(\mathbf{n} \cdot (\mathbf{p}(\alpha) - \mathbf{p}_0) = 0 \)
- So we have
 \[
 \alpha = \frac{\mathbf{n} \cdot (\mathbf{p}_0 - \mathbf{p}_1)}{\mathbf{n} \cdot (\mathbf{p}_2 - \mathbf{p}_1)}
 \]

- Six multiplications and one division in general
- How about clipping against canonical view volume? – only one division and more efficient
When can clipping be done?

- Clipping in VCS: correct but expensive computations
 - Clipping in CCS (before perspective division)
 - Clip in homogeneous coordinates – correct but rather tricky
 - Clipping in NDCS (after perspective division)
 - Most efficient but be aware of case where \(w < 0 \)
Problem with $w < 0$

- Seeing behind the camera with Frustum()

```
z
square at 1.0

z
near plane +2.0

z
near plane +0.5
```

- eye
- near plane -1.0
- far plane -30.0

NO

- NO!

- YES!
Situation 2 (aside)

near plane +2.0

\[z \quad \text{eye} \quad \text{far plane } -30.0 \quad \text{NO!} \]

\[
\begin{bmatrix}
- & - & - & - & - \\
- & - & - & - & - \\
0 & 0 & -\frac{28}{32} & \frac{120}{32} & 0 \\
0 & 0 & -1 & \frac{32}{32} & 0 \\
0 & 0 & -1 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
- \\
- \\
1 \\
1 \\
1 \\
\end{bmatrix}
=
\begin{bmatrix}
- \\
- \\
\frac{92}{32} \\
\frac{32}{32} \\
-1 \\
\end{bmatrix}
=
\begin{bmatrix}
- \\
- \\
-2.875 \\
1 \\
1 \\
\end{bmatrix}
\]

-2.875 is outside of canonical cube: z in [-1, +1]
Situation 3 (aside)

near plane +0.5

z

eye

far plane −30.0

YES!

\[-0.0164\] is \textbf{inside} of canonical cube: \(z\) in \([-1, +1]\)

\[
\begin{bmatrix}
- & - & - & - & - \\
- & - & - & - & - \\
0 & 0 & -29.5 & 30 & 30.5 \\
0 & 0 & 30.5 & 30.5 & 0 \\
0 & 0 & -1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
- \\
- \\
1 \\
1
\end{bmatrix}
= \begin{bmatrix}
- & - & - & - & - \\
0.5 & 30.5 & -1 & -1 & -1
\end{bmatrix}
\begin{bmatrix}
- \\
- \\
- \\
- \\
- \end{bmatrix}
= \begin{bmatrix}
- \\
-0.0164 \\
1
\end{bmatrix}
\]
Problem with line clipping in NDCS

- Perspective division may create a problem: depth information may get lost if w component < 0

- Example:

<table>
<thead>
<tr>
<th></th>
<th>VCS</th>
<th>CCS</th>
<th>NDCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>(1, 0, -2)</td>
<td>(1, 0, 2/3, 2)</td>
<td>(1/2, 0, 1/3)</td>
</tr>
<tr>
<td>P_2</td>
<td>(0, 0, 2)</td>
<td>(0, 0, -6, -2)</td>
<td>(0, 0, 3)</td>
</tr>
</tbody>
</table>
Various solutions

- Clip all in VCS – “safest” but expensive
- Clip in CCS using J. Blinn’s technique [78 paper]
- Alternatively, note that
 - Negative \(w \) values occur only for points with \(z > 0 \)
 - Depth order preserved in NDCS for points with negative \(z \) in VCS

So clip out points behind COP in VCS and then project and clip in NDCS. Or do not create content behind eye.
Application of projection: shadows

- Essential component for realistic rendering
- Naturally use projections
 - Can produce **hard** shadows
 - Only handles shadows on a plane
 - To shadow on a polygonal face, need **clipping**
- More advanced shadow algorithms exist, e.g., soft shadows are not easy to do
Shadow polygon: parallel projection

- **Shadow polygon** is obtained via projection
 the center of projection is a light source
- Project shadow on \(z = 0 \)
- Light at \(\propto \) (directional light)
- Derive the projection matrix

\[
\begin{bmatrix}
 x_s \\
 y_s \\
 0 \\
 1 \\
\end{bmatrix}
=
\begin{bmatrix}
 x_p \\
 y_p \\
 z_p \\
 1 \\
\end{bmatrix}
\]
Shadow polygon: parallel projection

- Project shadow on $z = 0$ with light at α (**directional light**)

$$(x_p, y_p, z_p) - (x_s, y_s, 0) = t \, (x_L, y_L, z_L), \text{ then solve}$$
Shadows: perspective projection

- Project on plane $z = 0$
- **Point light source**
- Derive the matrix

\[
\begin{bmatrix}
 x_s \\
 y_s \\
 0 \\
 1
\end{bmatrix}
= \begin{bmatrix}
 \cdot & \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot & \cdot \\
 \cdot & \cdot & \cdot & \cdot \\
\end{bmatrix}
\begin{bmatrix}
 x_p \\
 y_p \\
 z_p \\
 1
\end{bmatrix}
\]
Shadows: perspective projection

- Project on plane $z = 0$
- **Point light source**
- Let us derive the matrix

\[
\begin{bmatrix}
 x_s \\
 y_s \\
 0 \\
 1
\end{bmatrix} =
\begin{bmatrix}
 -z_L & 0 & x_L & 0 \\
 0 & -z_L & y_L & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & -z_L
\end{bmatrix}
\begin{bmatrix}
 x_p \\
 y_p \\
 z_p \\
 1
\end{bmatrix}
\]

\[
(x_p, y_p, z_p) - (x_s, y_s, 0) = t \left[(x_L, y_L, z_L) - (x_p, y_p, z_p)\right], \text{ then solve}
\]

We have

\[
t = z_p / (z_L - z_p), \quad x_s = (1 + t)x_p - tx_L
\]
Shadow of a teapot