Surface Reconstruction from Unorganized Points

Richard Zhang
CMPT 464/764: Geometric Modeling in Computer Graphics
Lecture 9
The problem

Given a set of **unorganized 3D points** \(X = \{x_1, \ldots, x_n\} \) sampled from an unknown surface \(M \), construct a surface \(M' \) that approximates \(M \).

One of the most intensively studied geometric modeling problems
Background

- **Input**: point cloud obtained via laser scanning with *no normal information*
- **Output**: a triangle mesh
- Surface M' can either **interpolate** or **approximate** X
- Solve a general problem: no structure or organization of points assumed …
 - Here **structural information** refers to specific knowledge about the arrangement of the point samples, e.g., contours on **parallel slices**
 - Some information about the device specs known, e.g., **scanning accuracy**
 - Normal information may be available via **photometric stereo** [Woodham 80]
Photometric stereo

- Estimate surface orientation from different images
Many related problems

- (Static) surface registration: bring several partial scans to alignment

- Key: point or region correspondence
Many related problems

- **Multi-view** geometry reconstruction, e.g., Microsoft photosynth

- Sub-problems: **shape-from-shading**, e.g., photo to point clouds, and (multi-view) point cloud **registration**
Many related problems

- **Time-varying surface tracking**, e.g., for deformation or animation
Problem scales

- From single objects (our focus) to scenes to buildings and cities!

Scaling up from objects to scenes [Shao et al. *Siggraph Asia 2012*]
Our problem: challenges

- Reconstruction should cover a range of shapes
 - Arbitrary topology, even if manifold, and arbitrary details
 - Shapes with **boundaries, holes, missing data**, etc.
Challenges

- Ensure consistent surface orientation
- Deal with noise in the data
- Recover sharp features

Feature-sensitive reconstruction [Kobbelt et al. 2001]
Missing data and noise
Theoretical challenge (aside)

- Ensure “correctness” of reconstruction, meaning
 - **Topology** correctness
 - **Geometry** precision: as sampling density increases, reconstruction approaches the original surface

- Correctness guarantees possible if sampling is sufficiently “good” – not easy to achieve or define “goodness” [Amenta et al. 98]

- Related to **local feature size: distance to medial axis**
Medial axis (aside)

- Singularities or meeting fronts of a “grass-fire flow”

- Set of all points that have at least two closest points to the boundary

- Medial axes for 3D shapes have sheets rather than curves
Main approaches

- Reconstruct **zero-set of a 3D scalar field**, e.g., via **marching cubes**
 - Use of tangent plane estimators – [Hoppe et al. 92]
 - Use of radial basis functions – [Carr et al. 01]
- Utilizing **Voronoi diagrams or Delaunay Tetrahedralizations** – [Amenta et al. 01, Boissonnat 84, Dey & Goswami 03, Kolluri et al. 04]
 - Power crust algorithm – [Amenta et al. 01]
- **Deform-to-fit** with energy minimization
 - e.g., inflating a balloon from inside the object – [Terzopoulos, Witkin, and Kass 88 & 91, Miller 91]
Main approaches

- Reconstruct **zero-set of a 3D scalar field**, e.g., via **marching cubes**
 - Use of tangent plane estimators – [Hoppe et al. 92]
 - Use of radial basis functions – [Carr et al. 01]

- Utilizing **Voronoi diagrams or Delaunay Tetrahedralizations** – [Amenta et al. 01, Boissonnat 84, Dey & Goswami 03, Kolluri et al. 04]
 - Power crust algorithm – [Amenta et al. 01]

- **Deform-to-fit** with energy minimization
 - e.g., inflating a balloon from inside the object – [Terzopoulos, Witkin, and Kass 88 & 91, Miller 91]
Our coverage

- H. Hoppe et al., “Surface Reconstruction from Unorganized Points.” *SIGGRAPH 92*
Assumptions

- **... on data noise (measurement error)**
 - The samples $X = \{x_1, x_2, \ldots, x_n\}$ are δ-noisy, i.e., each sample is no farther than δ away from its true position.
 - Features of size less $< \delta$ cannot be recovered reliably.

- **... on sampling density**
 - ρ-dense: within each sphere centered at a point on surface M having radius ρ, at least one sample is drawn.
 - This assumption is necessary in order to distinguish between holes in surface (boundary) and holes in the sampling.
 - If there is an empty sphere with radius $(\delta + \rho)$ embedded in the sampling, then it is a hole in the model.
Overview of Hoppe’s approach

- Input: set X of unorganized 3D points (δ-noisy; ρ-dense) sampled near surface M

- Algorithm in two stages
 1. Obtain a function $f : D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^3$, is a region near the true surface M, such that $f(p)$ estimates the signed distance from p to M
 2. The zero-set $Z(f)$ of f is an estimate of M. A contouring or marching-cube algorithm approximates $Z(f)$ by a triangle mesh

- Output: a connected, consistently oriented 2-manifold triangle mesh, possibly with boundary

- A general paradigm: function f can be obtained in other means
Signed distance function (SDF)

- Distance from a point \(p \) to a surface \(M \) is the distance from \(p \) to a closest point on \(M \)
- Sign depends on which side of \(M \) point \(p \) lies
- Since \(M \) is unknown, it is approximated by a set of oriented tangent planes – one per data point
- Tangent plane for \(x_i \) is defined by a center \(o_i \) and a unit normal \(n_i \)
Computing SDF, given tangent planes

- Determine **region** D close to surface M

- If $p \in D$, the signed distance from p to M is a projection

 $$f(p) = (p - o_i) \cdot n_i$$

 where **o_i is the tangent plane center that is closest to p**

- If the shortest distance from a point p to the point set X is $> (\delta + \rho)$, then p cannot be on the surface M

 - Otherwise the sphere centered at p with radius $\delta + \rho$ must contain a point from X, since the samples are δ-noisy and ρ-dense

 - p is possibly near a hole on the surface $\rightarrow f(p)$ is undefined

 - The remaining set of p define D
Tangent plane estimation – key!

- How to define a tangent plane associated with a sample x_i?

- Define: $Nbr(x_i, k) =$ the set of k nearest neighbors (kNN) of a data point x_i, where k is a user input value

- Center o_i is the centroid of $Nbr(x_i, k)$

- Normal n_i is determined by principal component analysis (PCA)

- The oriented plane passing through o_i having normal $+/− n_i$ provides the least squares best fit to points in $Nbr(x_i, k)$
PCA: Linear dimensionality reduction

- **Linearly map** a set of \(m \)-dimensional vectors \(\{a_1, \ldots, a_n\} \), to an \(k \)-dimensional subspace, \(k < m \), so as to minimize the approximation error in the least square sense.
Principal component analysis (PCA)

- Project data points a_i onto the leading k eigenvectors (for the k largest eigenvalues) of the covariance matrix Σ for the original data set a

$$\Sigma = (a - \bar{a}1^T)(a - \bar{a}1^T)^T = \sum_{j=1}^n (a_i - \bar{a}) \cdot (a_i - \bar{a})^T \in \mathbb{R}^{m \times m}$$

where \bar{a} is the (uniform) mean of data points in a.

- Eigenvectors: orthogonal and major modes of variations

- A k-dimensional embedding is obtained by

$$\hat{a}_{(k)} = E_{(k)}^T a,$$

where $E_{(k)} \in \mathbb{R}^{m \times k}$ has k columns of leading eigenvectors of Σ.

Normal of the tangent plane

- Covariance matrix Σ of 3D points in $Nbr(x_i, k)$ is a symmetric (positive semi-definite) 3×3 matrix

- The normal chosen for $Nbr(x_i, k)$ is $+/-$ of the eigenvector of Σ corresponding to the **smallest eigenvalue** of Σ

- The 2-dimensional subspace, i.e., the plane, is spanned by the other two eigenvectors

- The exact **sign** of the normal is chosen so that nearby tangent planes are **consistently oriented**
Aside I: derivation of PCA

- Given a set of 3D points x_1, \ldots, x_k, find a best fitting plane (o, n) in the least squares sense, where o is a point on the plane and n is the unit plane normal.

- The minimization problem:

$$
\min \sum_{i=1}^{k} [(x_i - o)^T \cdot n]^2 \quad \text{subject to} \quad n^T n = 1
$$

- Use Lagrange Multiplier:

$$
\min F(o, n, \lambda) = \sum_{i=1}^{k} [(x_i - o)^T \cdot n]^2 - \lambda(n^T n - 1)
$$

- We assume that $n = (n_x, n_y, n_z)^T \neq 0$.

- Differentiate F with respect to o, we have

$$
\left[\sum_{i=1}^{k} (x_i - o)^T \right] \cdot n = 0
$$

- Differentiate F with respect to n_x, n_y, n_z and then combine into matrix form, we have

$$
\left[\sum_{i=1}^{k} (x_i - o)(x_i - o)^T \right] \cdot n = \lambda n$$
Aside II: derivation of PCA

![Equation](image)

- So the normal \(n \) is an eigenvector of the covariance matrix and there are three local minima corresponding to three eigenvectors.

- Alternatively, the minimization problem is really

 \[
 \min \sum_{i=1}^{k} [(x_i - o)^T \cdot n]^2 = n^T \Sigma n, \quad \text{subject to } n^T n = 1
 \]

- By Courant-Fischer Theorem, this is just an eigenvalue problem.
Consistent normal orientation

- A harder part of the algorithm – it tells topological information
- One can model it as a global graph optimization problem
 - One node N_i per tangent plane
 - Two nodes connected if the corresponding centers are sufficiently close (where consistent orientation is enforced)
 - Cost of edge (N_i, N_j) is $\mathbf{n}_i \cdot \mathbf{n}_j$ (maximum if coplanar)
- Problem: Find orientation to maximize the total cost in graph
- But this optimization problem is NP-hard (i.e., its decision version is NP-complete)
Approximate solution

- First, build a **Riemannian graph** on tangent plane centers
 - Riemannian graph: encodes the geometric proximity of the tangent plane centers
 - Riemannian graph is built upon the **Euclidean minimum spanning tree** (EMST) – connected, tends to connect near neighbors, but there are not enough edges
 - Add an edge \((N_i, N_j)\) to EMST if \(o_i\) is one of the \(k\) closest neighbors of \(o_j\) or vice versa
Recall: EMST

- Given a set of points L, an EMST is a spanning tree of L with the minimum total cost (edge cost measured by Euclidean distance).

- Can be obtained via Kruskal’s minimum spanning tree algorithm:
 - Conceptually consider complete graph on L with Euclidean distances as edge weights.
 - Greedily add shortest edges that do not form a cycle.
 - Stop when no edges can be added any more.
EMST and Riemannian graph
Orientation propagation

- To start propagation, choose orientation for an initial plane
- Propagate this orientation to its nearby planes by traversing the Riemannian graph
- **Traversal order is important**
- A heuristic: propagate along **low curvature** directions –
 - favor propagation from plane i to j if they are almost parallel
 - less likely to be a mistake
Algorithm

- Assign weight \((1 - |\mathbf{n}_i \cdot \mathbf{n}_j|) \) to edge \((N_i, N_j)\)
- Propagate along edges of minimum spanning tree of the resulting graph (\textit{depth-first search})
- How to propagate from \(\mathbf{n}_i\) to next plane \(j\)?
 - If \(\mathbf{n}_i \cdot \mathbf{n}_j < 0\), \(\mathbf{n}_j = -\mathbf{n}_j\)
- How to choose an initial orientation?
 - Normal of plane whose center has largest \(z\) value is forced to point to \(+z\) direction
Result

MST of normal variation graph with edge costs colored

Oriented tangent planes as shaded triangles
Recall SDF

- $f(p)$ is signed distance from p to “closest tangent plane”

- Since sampling is δ-noisy and ρ-dense, if $f(p) > \delta + \rho$, then p cannot be on the surface M

 $\rightarrow f(p)$ is undefined in this case

- Otherwise, the signed distance from p to M is a projection

 $$f(p) = (p - o_i) \cdot n_i$$

 where o_i is the tangent plane center that is closest to p

Why is $f(p)$ not the closest distance from p to any tangent plane?
Contour tracing

- Given the set of oriented tangent planes, SDF from points to these planes can be computed.

- Next, need to extract the iso-surface corresponding to the zero-set of the signed distance function.

- This can be done using a Marching Cubes (contour tracing) algorithm or one of its variants.
Preparation for cubes marching

- Divide 3D space into cubical grids
- **Sample signed distance values at cube vertices**
- Only choose cubes that intersect the zero iso-surface for efficiency
- Size of cube $d \approx \delta + \rho$, why?
 - if $d >> \delta + \rho$, may join boundary
 - if d too small, complexity too high
- No intersection between zero-surface and cube if a vertex has undefined $f(p)$
Marching cubes algorithm

- **Input:** a scalar field sampled over the vertices of a cubical grid
- **Output:** a set of triangles approximating the zero iso-surface of the scalar field
- **Basic idea:**
 - Process (march) cubes one at a time
 - Look at scalar values at vertices to decide how the iso-surface intersects the cube
 - Generate triangles reflecting these intersections
2D case: iso-contouring

- Inside iso-curve $\equiv <$ and iso-value $\equiv -$
- Outside iso-curve $\equiv >$ and iso-value $\equiv +$
- How many topologically different cases are there?
2D case: iso-contouring

- Inside iso-curve $\equiv <$ and iso-value $\equiv -$
- Outside iso-curve $\equiv >$ and iso-value $\equiv +$
- How many topologically different cases are there?
Iso-contouring algorithm sketch

Divide-and-conquer

1. Look at (march) one cell at a time
2. Compare the values at 4 corners with iso-value
3. Linear interpolate along edges for intersection points
4. Connect interpolated points together
Marching cubes

- Generalize iso-contour algorithm to 3D
- March cubes one at a time
- Linear interpolation again
- There are more cases:
 - Total of $2^8 = 256$ cases
 - Reduce to 15 topological cases relying on value and rotational symmetry
Improvements

- Exploit spatial coherence
 - e.g., for an interior cube, only three new linear interpolations are needed, if cubes are visited in scan-line order

- Need to find efficient ways for cube traversal
 - Typically, roughly n^2 cubes intersect an iso-surface in n^3 cube grid
 - e.g., can use an octree to skip empty regions – a great deal of research along this line
The ambiguity problem

- Certain marching cube cases have more than one possible triangulations – may create a hole mistakenly.
Fixing the ambiguity problem

- One consistent way to do it

There is another opposite case:
keep case 3 and change case 6 to 6A

- Need to come up with these consistent triangulations
Ambiguous faces

- A face with two opposite vertices having the same sign

- How to resolve this ambiguity? — use the asymptotic decider [Nielson & Hamman 91] — somewhat complex and adds cases to original marching cubes
Asymptotic decider: rough idea

- Need to **examine iso-values inside the face**

- Inside values are unknown, approximate via **bi-linear interpolation**
Summary of Hoppe’s approach

- Surface reconstruction from unorganized points through iso-surface extraction over a signed distance field computed with respect to a set of oriented tangent planes approximating the surface
- Space subdivision helps speed up algorithm (empty cube skipping)
- Constructed surface **approximates** point cloud
- No theoretical guarantee that the surface is correct
- No mechanism for feature preservation
Unreliability of PCA

- Thick point cloud – need thinning
- Non-uniform point distribution
- Close-by surface sheets
New propagation cost (aside)

- Again, the close-by surface sheets problem
- Possible solution: also look at the propagation direction
- Sharp feature detection: should prevent propagation there

Hui Huang, Dan Li, Hao Zhang, Uri Ascher, and Daniel Cohen-Or, "Consolidation of Unorganized Point Clouds for Surface Reconstruction," ACM Trans. on Graphics (Proceeding of SIGGRAPH Asia 2009), Article 176.
Other approaches (aside)

- Voronoi-based with **theoretical guarantee** – by N. Amenta et al., “A New Voronoi-based Surface Reconstruction Algorithm,” *SIGGRAPH 98*

- α-shape based approaches – [Bajaj, Bernardini 95]

- **Deform-to-fit** with energy minimization (e.g., inflating a balloon in the object) – [Terzopoulos, Witkin, and Kass 88 & 91, Miller 91]

- Use of **radial basis functions** – [Carr et al. 01, Iske 02]

- Use of **Poisson reconstruction** – [Kazhdan et al. 06]

- Definition of point set surfaces, e.g., **MLS = Moving Least Squares** – [Levin et al. 01, Alexa et al. 02]