**NAME**
**glRotated,** **glRotatef** - multiply the current matrix by a
rotation matrix
**C** **SPECIFICATION**
void **glRotated**( GLdouble *angle*,
GLdouble *x*,
GLdouble *y*,
GLdouble *z* )
void **glRotatef**( GLfloat *angle*,
GLfloat *x*,
GLfloat *y*,
GLfloat *z* )
**PARAMETERS**
*angle* Specifies the angle of rotation, in degrees.
*x*, *y*, *z*
Specify the *x*, *y*, and *z* coordinates of a vector,
respectively.
**DESCRIPTION**
**glRotate** produces a rotation of *angle* degrees around the
vector (x,y,z). The current matrix (see **glMatrixMode**) is
multiplied by a rotation matrix with the product replacing
the current matrix, as if **glMultMatrix** were called with the
following matrix as its argument:
( xx(1-c)+c xy(1-c)-zs xz(1-c)+ys 0 )
| |
| yx(1-c)+zs yy(1-c)+c yz(1-c)-xs 0 |
| xz(1-c)-ys yz(1-c)+xs zz(1-c)+c 0 |
| |
( 0 0 0 1 )
Where c = cos(angle), s = sine(angle), and ||( x,y,z )|| = 1
(if not, the GL will normalize this vector).
If the matrix mode is either **GL_MODELVIEW** or **GL_PROJECTION**,
all objects drawn after **glRotate** is called are rotated. Use
**glPushMatrix** and **glPopMatrix** to save and restore the
unrotated coordinate system.
**NOTES**
This rotation follows the right-hand rule, so if the vector
(x,y,z) points toward the user, the rotation will be
counterclockwise.
**ERRORS**
**GL_INVALID_OPERATION** is generated if **glRotate** is executed
between the execution of **glBegin** and the corresponding
execution of **glEnd**.
**ASSOCIATED** **GETS**
**glGet** with argument **GL_MATRIX_MODE**
**glGet** with argument **GL_MODELVIEW_MATRIX**
**glGet** with argument **GL_PROJECTION_MATRIX**
**glGet** with argument **GL_TEXTURE_MATRIX**
**SEE** **ALSO**
**glMatrixMode**, **glMultMatrix**, **glPushMatrix**, **glScale**,
**glTranslate**