Curvature on Triangle Meshes

Shameel Bhimji
School of Computing Science, Simon Fraser University
April 18th, 2005
Overview

• Introduction
• Curvature Definitions
• Quadratic Fitting Method
• Spatial Averages Method
• Demo
• Conclusion
Introduction

• Many computer graphics and vision applications require first/second order differential properties such as curvatures to be as accurate as possible
• Examples include scene segmentation, anisotropic remeshing, surface smoothing and object recognition
Introduction

• Anisotropic remeshing of hand model
• Ridge lines in David model
Curvature Definitions

• Let S be a surface in \mathbb{R}^3 described by an arbitrary parameterization of 2 variables.
• Define local tangent plane at a point P orthogonal to the normal vector N.
• Curvatures, local bending of the surface.
• Normal curvature $\kappa N(\theta)$ for each unit direction $e\theta$.
Curvature Definitions

- Principal curvatures κ_1, κ_2 associated with the orthogonal directions e_1 and e_2: the extreme values of normal curvatures.
- Mean Curvature K_H is defined as the average of normal curvatures around point P.
- Gaussian Curvature K_G is defined as the product of κ_1 and κ_2.
Curvature Definitions
Quadratic Fitting Method

- Fit a surface to local points around the vertex in question using a quadratic polynomial surface.
- Curvature measurements of the fitted surface are used as curvature estimates for the point.
Quadratic Fitting Method

1. Estimate the normal N at the point P in question.
2. Create a rotation matrix that will map the global coordinate system to a local coordinate system at P where the Z axis of this new LCS will be aligned with the normal N and the X axis with the global X axis. The rotation matrix $R = [r1, r2, r3]$ is defined as follows:

 \[r3 = n, \quad r1 = \frac{(I - nn^T)i}{\| (I - nn^T)i \|}, \quad r2 = r3 \times r1, \]

 where I is the identity matrix and i is the global X axis $[1,0,0]^T$.

3. Select the neighboring points to be used for surface fitting. The 1-Ring points around P is a good choice.
4. Map the selected points from the GCS to the LCS using R: $x' = R(x - P)$
5. Solve for the coefficients by computing a least squared solution for:

 \[
 \begin{pmatrix}
 x_1^2 & y_1^2 & x_1y_1 \\
 \vdots & \vdots & \vdots \\
 x_n^2 & y_n^2 & x_ny_n
 \end{pmatrix}
 \begin{pmatrix}
 a' \\
 b' \\
 c'
 \end{pmatrix}
 =
 \begin{pmatrix}
 z_1 \\
 \vdots \\
 z_n
 \end{pmatrix}
 \]

 Since this is an overdetermined system in the form $Ax = b$ it can be solved by $x = (A^TA)^{-1}A^Tb$.
Quadratic Fitting Method

6. We can now estimate the mean KH, Gaussian KG, and principal curvatures K_1 and K_2 with the following equations:

- $K_1 = a + c + ((a - c)^2 + b^2)^{1/2}$
- $K_2 = a + c - ((a - c)^2 + b^2)^{1/2}$
- $K_G = 4ac - b^2$
- $K_H = a + c$
Quadratic Fitting Method

Basic/Simple Fitting:
\[Z = aX^2 + bXY + cY^2 \]

Extended Fitting:
\[Z = aX^2 + bXY + cY^2 + dX + eY \]

Full Fitting:
\[Z = aX^2 + bXY + cY^2 + dX + eY + f \]
(non-zero constant)
Quadratic Fitting Method

- With extended version, surface normal is refined to find better surface fit

- \(K_G = \frac{4ac - b^2}{(d^2 + e^2 + 1)^2} \)
- \(K_H = \frac{a+c+ae^2+cd^2 - bde}{(d^2 + e^2 + 1)^{3/2}} \)
Spatial Average Method

• Define properties of the surface at each vertex as *spatial averages* around this vertex.

• Restrict the average to be within the immediately neighboring triangles (the 1-ring).
Spatial Averages Method

- Area around vertex can be of 2 types
 - Voronoi
 - Barycenter
Spatial Averages Method

- Voronoi errors are preferred since error bounds are tight but only works with non-obtuse triangles
- We compromise by using a mixed area

\[A_{\text{Mixed}} = 0 \]

For each triangle \(T \) from the 1-ring neighborhood of \(x \)

If \(T \) is non-obtuse, // Voronoi safe

// Add Voronoi formula (see Section 3.3)

\[A_{\text{Mixed}^+} = \text{Voronoi region of } x \text{ in } T \]

Else // Voronoi inappropriate

// Add either area(\(T \))/4 or area(\(T \))/2

If the angle of \(T \) at \(x \) is obtuse

\[A_{\text{Mixed}^+} = \text{area}(T)/2 \]

Else

\[A_{\text{Mixed}^+} = \text{area}(T)/4 \]
Spatial Averages Method

- Integral of Mean Curvature
- Simplified using Gauss’ Theorem

\[\iiint_{A_m} K(x) dA = \frac{1}{2} \sum_{j \in N_1(i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (x_i - x_j), \]

- Average this using our \(A_{\text{mixed}} \)
Spatial Averages Method

Mean Curvature Normal Operator

\[K(x_i) = \frac{1}{2A_{\text{Mixed}}} \sum_{j \in N_1(i)} (\cot \alpha_j + \cot \beta_j) (x_j - x_i) \]

The mean curvature is then half the magnitude of the vector.
Spatial Averages Method

- Using Gauss-Bonnet theorem:

\[
\int\int_{A_M} \kappa_G dA = 2\pi - \sum_{j=1}^{\#f} \theta_j
\]

- we then average this over our \(A_{\text{mixed}} \)
Spatial Averages Method

Gaussian Curvature Operator

\[\kappa_G(x_i) = (2\pi - \sum_{j=1}^{#f} \theta_j) / A_{\text{Mixed}} \]
Spatial Averages Method

Principal Curvature Operators

\[
\begin{align*}
\kappa_1(x_i) &= \kappa_H(x_i) + \sqrt{\Delta(x_i)} \\
\kappa_2(x_i) &= \kappa_H(x_i) - \sqrt{\Delta(x_i)}
\end{align*}
\]

with: \(\Delta(x_i) = \kappa_H^2(x_i) - \kappa_G(x_i) \) and \(\kappa_H(x_i) = \frac{1}{2}\|K(x_i)\| \).
Spatial Averages Method

• Principal Directions is found by computing eigenvectors of curvature tensor \(B \):

\[
d_{i,j}^T B d_{i,j} = \kappa_{i,j}^N,
\]

\[
B = \begin{pmatrix}
a & b \\
b & c
\end{pmatrix}
\]

where \(d_{ij} \) is the unit direction in the tangent plane of the edge \(x_i x_j \)
Questions? Comments?

Time for Demo