CAME: Cloud-Assisted Motion Estimation for Mobile Video
Compression and Transmission

Yuan Zhao
School of Computing Science
Simon Fraser University
Burnaby, BC, Canada

yzal73@sfu.ca

Jiangchuan Liu
School of Computing Science
Simon Fraser University
Burnaby, BC, Canada

jcliu@sfu.ca

ABSTRACT

Video streaming has become one of the most popular net-
worked applications and, with the increased bandwidth and
computation power of mobile devices, anywhere and anytime
streaming has become a reality. Unfortunately, it remains a
challenging task to compress high-quality video in real-time
in such devices given the excessive computation and energy
demands of compression. On the other hand, transmitting
the raw video is simply unaffordable from both energy and
bandwidth perspective.

In this paper, we propose CAME, a novel cloud-assisted
video compression method for mobile devices. CAME lever-
ages the abundant cloud server resources for motion estima-
tion, which is known to be the most computation-intensive
step in video compression, accounting for over 90% of the
computation time. With CAME, a mobile device selects and
uploads only the key information of each picture frame to
cloud servers for mesh-based motion estimation, eliminating
most of the local computation operations. We develop smart
algorithms to identify the key mesh nodes, resulting in min-
imum distortion and data volume for uploading. Our sim-
ulation results demonstrate that CAME saves almost 30%
energy for video compression and transmission.
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1. INTRODUCTION

Video streaming has become one of the most popular net-
worked applications, and it contributes a dominant fraction
of internet traffic. Along with the advances in 3G and wire-
less network, mobile devices become an important end de-
vice for Internet video applications. Online statistics [14]
shows that YouTube mobile gets over 400M views a day,
representing 13% of the overall YouTube daily views. Un-
fortunately, video compression on mobile devices remains a
challenging task due to limited energy. The user has to copy
the video to a personal computer, then compress and upload
the video. This however is not convenient and discourages
people to share mobile videos on Internet.

Another trend of Internet is that Cloud Computing is
booming recent years. Cloud Computing provides an il-
lusion of infinite computing resources which include band-
width, computation and storage. Major cloud providers also
provide High Performance Computing (HPC), which suits
multimedia processing well.

If mobile devices can leverage Cloud Computing resources
to perform video compression, the computation cost on the
mobile device itself can be reduced dramatically. However,
transferring large video file to cloud server introduces huge
energy consumption, which contradicts the benefit. The
question then becomes how to leverage cloud server com-
putation resources without transferring the whole video file.

A typical video compression consists of: motion estima-

tion, transformation, quantization, and entropy coding. Among

all these steps, the motion estimation is the most compu-
tation intensive and time consuming, which accounts for
90% computation time of the whole compression process [4].
Hence it is worthwhile to transfer even part of the motion
estimation computation to cloud servers.

This paper proposes Cloud-assisted Motion Estimation
(CAME), a novel method to smartly leverage cloud’s compu-
tation resources for motion estimation. We focus on mesh-
based motion estimation, which is known to be highly effec-
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Figure 1: CAME illustration

tive. Our method uploads anchor frames and mesh nodes
to cloud server for calculating mesh nodes Motion Vectors
(MV). The motion vectors are pushed back to mobile devices
for motion estimation of sub blocks and the rest video com-
pression steps. By carefully choosing mesh structure, video
compression energy consumption can be largely reduced on
mobile devices.

Our simulation result suggests, the proposed method can
save up to 30% energy for video compression and transmis-
sion compared to All-on-Mobile method which performs the
complete video compression on mobile devices.

The rest of this paper is organized as following: We first
review the related work in section 2. Then in Section 3,
we present CAME system architecture. In Section 4, we
introduce the implementation details of CAME. Section 5
evaluates the proposed method using simulated testing sys-
tem. Finally in Section 6, we draw conclusions and propose
the future research work.

2. RELATED WORK
2.1 Cloud-based Video Streaming

With the elastic and on-demand nature of resource provi-
sioning, cloud computing has become a promising platform
for diverse applications, many of which are video related [7,
9, 12].

To reduce bandwidth reservation cost and to guarantee
the streaming performance, a predictive cloud bandwidth
auto-scaling system is proposed in [10] for VoD providers.
The predictable anti-correlation between the demands of
video channels is exploited in the system for statistical mul-
tiplexing and for hedging the risk of under-provision. Built
on a peer-to-peer storage cloud, Nowasky [8] provides on-
demanding streaming of cinematic-quality videos over a high-
bandwidth network with two novel mechanisms: a coding-
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aware peer storage and replacement strategy and an adap-
tive server push strategy with video popularity-redundancy
awareness. A cloud-based video proxy system is presented in
[5] transcoding the original video in real rime using a scal-
able codec based on H.264/SVC (Scalable Video Coding),
which is aimed at streaming videos of various qualities.

Motivated by these previous studies, our CAME seeks to
exploring the resources from cloud as well. Our focus in
this paper, however, is to smartly utilize such resource for
motion estimation, the most computation-intensive task in
video compression, so as to realize realtime highly quality
video encoding and streaming from mobile devices.

2.2 Mobile Video Compression

Since mobile devices typically depend on a limited en-
ergy supply and video compression is computation-intensive,
many existing works have focused on reducing the compu-
tational cost for mobile devices [1, 3, 11]. The low complex-
ity video compression system suggested in [6] abandons the
ME/MC paradigm and codes the difference between succes-
sive frames, making the process significantly less time con-
suming. A two-step algorithm is introduced in [1], which
is further improved in [3] to reduce the computation and
memory accesses with variable block size motion estima-
tion. A mobile video communication system is developed
[11], in which the transmitter uses a Wyner-Ziv (WZ) en-
coder while the receiver uses a traditional decoder. An effi-
cient transcoder should be inserted in the network to convert
the video stream.

Our work differs from them in that we explores mesh-
based motion estimation [13], which is known to be cost-
effective and yet has to be examined in the mobile com-
munication context. We demonstrate that, given the small
data volume of meshes, they work well with cloud-assisted
compression to best balance computation cost, transmission
overhead, and compression quality.



3. CAME: CLOUD-ASSISTED MOTION ES-
TIMATION FOR MOBILE DEVICES

We consider a cloud-assisted mobile video streaming sys-
tem that consists of mobile devices and cloud servers. A
mobile device user captures video in realtime and expects
to compress the video and then streaming it to others in
realtime as well. Given the high computation overhead of
compression and the limited computation power and battery
of the device, it is preferable that the compression operation
or part of the operation is shifted to the cloud servers. Yet,
simply uploading the raw video to the cloud server for com-
pression will consume significant bandwidth and therefore
energy for transmission, and is thus not applicable. To this
end, our CAME seeks to shift the motion-estimation, the
most computation-intensive module in compression to the
cloud. Specifically, CAME employs a mesh-based motion
estimation, which consists of two parts: mesh node motion
estimation and the sub-block motion estimation. As we will
show later, the mobile device can upload reference frames
and mesh data to the cloud for estimation, which are of
much smaller data volume. It then downloads the estimated
Motion Vectors (MVs) from the cloud server and completes
the remaining video compression steps.

The CAME architecture is illustrated in Figure 1, which
includes following four key steps:

1. In the mobile device, the raw video is divided into
macro blocks (MBs). For each MB, a reference frame
is extracted, together with a mesh for each successive
P-frame. The device then uploads the reference frame
and meshes to the cloud;

2. The cloud server conducts the mesh motion estima-
tion for the uploaded reference frame and meshes, and
pushes the generated mesh MVs back to the CAME
client on the mobile device;

3. The mobile devices, upon receiving the MVs for mesh
nodes of each P-frame, continues to calculate sub block
MVs using block-based motion estimation as well as
entry coding;

4. The compressed video is then stored in the device or
stream to other devices or servers through the wireless
channel.

4. CAME IMPLEMENTATION

While the CAME architecture is intuitive, there are a
number of implementation issues to be addressed toward a
complete system. In this section, we explain the implemen-
tation details of CAME, particulary on mesh node selection
strategy for cost minimization.

4.1 Mesh Node Selection

The mesh-based motion estimation is performed by esti-
mating one motion vector (MV) for each mesh node. As
shown in Figure 2 and Figure 3, mesh nodes are sampled on
the reference frame and MVs are calculated from predictive
frames (P-frame).

Generally, two different mesh structures are used: regular
triangular or rectangular mesh structures and object-based
mesh structure.
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Figure 3: Mesh Nodes in Motion Estimation

Regular Mesh Structures
Triangular and rectangular mesh structures are two
commonly used structures in all the mesh structures.
Mesh topology is simple and predefined in regular mesh.

Object-based Mesh Structure

The object-based mesh structure is also known as adap-
tive mesh structure. As in real world videos, usually
there are discontinuities at object boundaries, so it
would be more accurate to sample mesh nodes along
object boundaries. In another word, the mesh selec-
tion and sampling should be adapted to the video ob-
jects, so that the motion within mesh nodes is smooth.
Someone has also proposed algorithms to sample mesh
nodes along motion or luminance discontinuities in or-
der to fit the objects boundaries.

Hierarchy Mesh Structures
Hierarchy mesh structure is between regular mesh struc-
ture and adaptive mesh structure. It’s based on regular
mesh, but is adaptive to image objects.

Regular mesh is commonly used since it is simple and
predefined. Using regular mesh, both encoder and decoder
know the mesh structure, thus there is no overhead to store
and send the mesh topology to the decoder. The object-
based structure is more accurate because it samples mesh
nodes along object boundaries, however it requires extra
overhead to analyze objects and mesh topology transmis-
sion. Therefore, regular mesh is preferred in CAME method.

Unlike standard mesh-based motion estimation, CAME
exploits a smarter algorithm for mesh node selection: CAME
applies a reversed mesh node selection and motion estima-
tion algorithm, in which mesh nodes are sampled on P-
frames and MVs are calculated from the mesh and the refer-
ence frame. Compared to standard mesh-based motion esti-



mation, CAME loses the advantage of tracking the same set
of mesh nodes over successive P-frames. However, CAME
gains much more benefits by uploading only the reference
frame and mesh data of P-frames instead of uploading the
whole video frames.

For a single MB, we denote one reference frame as R, one
P-frame as P, and the mesh node fraction My from P as f.
The total transmission cost is

m n

Cn=>Y» (Cr+> Ci-f)

i=1 i=1

(1)

where m is the number of MB, and n is number of P-frame
in a single MB.

4.2 Cloud Server Motion Estimation for Mesh
Nodes

The energy of the cloud server is much more economy than
mobile devices, therefore we do not take the cloud side en-
ergy consumption into consideration. However, total delay
is crucial to the CAME system as CAME is a real-time video
compression and uploading system. To reduce total delay of
CAME system, we leverage cloud parallel computation re-
sources to compute mesh MVs. The natural separation of
frames to MBs provided a great isolation for application level
parallelism. CAME server utilize a master-slave paradigm
to coordinate the mesh motion estimation for a single video.
The CAME server delay can be largely reduced thanks to
cloud parallelled computation. The cloud server motion es-
timation is depicted in Algorithm 1.

Algorithm 1 CloudServer-Motion-Estimation

INPUT: {R, My;}, anchor frame R and mesh nodes on P
MVs = ¢
for each My; in {R, My;} do
Full search to calculate MV from R and Mjy;
MV, = MV, UMV
end for
OUTPUT: Push motion vector MV, back to the mobile
device

4.3 Sub-Block Motion Estimation

The mobile device downloads estimated MVs for each P-
frame mesh, and we denote the downloading transmission
cost as Cy. Then the mobile device uses these MVs to cal-
culate the sub block MVs and finally compose a complete
MYV for P-frame. The cost to compute all MVs for all sub
blocks inside a single P-frame is

cr=>3 0

j=1i=1

(2)

where n is number of P-frame in a single MB, m is sub
block number inside a single P-frame. This step is a local
search which is constrained by the mesh node MV, so the
computation is also restricted and relatively small energy
consumption is consumed. Next, the mobile device regener-
ates the block pixels based on the motion estimation result.
We denote the motion compensation cost as

Cc = 2_:1 Ocompfi (3)

98

where n is the number of P-frames in a single MB. All the
other steps are the same as normal video compression pro-
cess, and we denote their costs as C,.

4.4 Mobile Device Algorithm

After the whole video compression process is finished, the
video is ready for uploading, and only P-frames are up-
loaded. We denote cost in this step as Cy. The complete
algorithm for the mobile device video compression is shown
in Algorithm 2.

Algorithm 2 Mobile-Video-Compression

INPUT: Complete raw video V'

Divide V to MacroBlocks(MBs) denoted by {M B;}

for each M B; in {MB;} do
Calculate {R, My;}, anchor frame R and fraction mesh
nodes on P
Upload {R, My;} to server for mesh node motion esti-
mation

end for

MVuideo = ¢

On receiving {M Viesp } from server:

for each MV in {MV,esn} do
Local search to calculate sub-block M V., for current
frame
Interpolate MV, into MV to get MV for frame
Mvvideo = Mvvideo U MVf
Calculate video compensation for current frame

end for

if MVyideo is complete then
Finish video compression process to get Veomp
Anchor frames are already deducted from Viomyp
Upload Veomp

end if

4.5 Total Cost Equation

Finally, the total cost equation is formulated as:

C=Cmn+Cq+Cs+Cec+Co+Cy (4)

where C,, is the total cost for uploading all MBs, Cy is
MV downloading cost, Cy is the total cost for sub block
motion estimation, C. is the motion compensation cost, C,
is all other costs for video compression on the mobile device
after motion estimation, C, is the final step mobile video
uploading cost.

5. EVALUATION

In this section, we evaluate implemented CAME method
on a simulated system. Mobile video compression and trans-
mission both require energy consumption. We evaluate CAME
method using a two-computer simulation system: one acts
as cloud server and the other acts as the mobile device. We
use simulated system because it is more generic and the re-
sult is not specific to a mobile device.

The transmission energy consumption is measured and
calculated from compressed video file size and such CAME
system intermediate output as mesh motion vectors. We
consider a generic energy model in terms of CPU cycle con-
sumption. Video compression CPU cycles can be directly
monitored and measured. However, transmission measure-
ment in CPU cycles is not straightforward, as transmission



Table 1: YUV Video Files Used in Testing
Video Size(WxH) | Frame | YUV | File Size
Name Num
Foreman | 352x288 300 420 43MB
Mother 352x288 300 420 43MB
Flower 352x 288 250 420 36.2MB

consumes energy not only on CPU, but also on wireless.
Based on the research work done in [2, 15], we assume the
energy conversion between CPU cycle and transmission is:
one byte of WiFi transmission consumes roughly the same
energy as 132.3251 CPU cycles.

As mentioned previously, mesh node density impacts both
transmission and computation. We choose different mesh
node fractions f in simulation. CAME are evaluated when
mesh node is sampled from 16x16, 8x8, and 4x4 blocks
respectively. Our simulation shows that 8 x8 mode achieves
best energy efficiency. Further, to evaluate how CAME per-
forms over existing mobile video compression and transmis-
sion methods, we compare CAME performance with All-
on-Mobile and Raw-Upload methods. In the All-on-Mobile
method, standard H.264 encoding is performed completed
on the mobile device and H.264 encoded video file is up-
loaded. In the Raw-Upload method, uncompressed video is
uploaded in raw format.

In the following sub sections, we first describe the video
compression testing data. Then we analyze CAME trans-
mission and computation energy respectively. Finally total
energy consumption is evaluated by adding up transmission
and computation energy consumption.

5.1 Testing Data

We take three YUV video files in the evaluation which are
commonly used in video compression testing. The details of
the three videos are illustrated in Table 1. The frame size
and frame number are not that important, because the to-
tal energy consumption and the total energy saving increase
proportionally to them. On the other hand, the video con-
tent really matters since the estimated MVs depend on spe-
cific video content. Mother and Daughter has low spatial
detail, while Foreman has medium spatial detail and Flower
has high spatial details.

5.2 Transmission Energy Consumption

‘We measure and calculate the total transmission consump-
tion in total transmission data size, and convert it to equiv-
alence CPU cycle consumption. There are three transmis-
sion phases in CAME: Initial reference frame and mesh node
data uploading, mesh node motion vectors downloading, and
compressed video data uploading.

The detail measure and calculation result in total trans-
mission data size is illustrated in Figure 4. The total trans-
mission energy consumption in CPU cycles is illustrated in
Table 2. Mother and Daughter has the similar result with
Foreman. Though Flower’s original video size is smallest,
the AoM and CAME transmission size is largest, because
Flower has higher spatial details. It is obvious that AoM
method’s data transmission cost is the lowest among all
three. The mesh-based motion estimation interpolated to
H.264/AVC encoding achieves almost 10:1 compression ratio
in our testing. This result is just as expected. Compared to
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AoM method, the proposed method introduces more trans-
mission because of the extra data transmission overhead for
mesh node uploading and mesh motion vectors downloading.
On the other hand, compared to Raw-Upload, the CAME
method still saves approximately 60% on total data trans-
mission. This verifies our idea that CAME can leverage
cloud server resources for motion estimation and video com-
pression without transferring the whole video data.

5.3 Video Compression Energy Consumption

The measurement of video compression energy consump-
tion in CPU cycles is straightforward. For CAME, the CPU
cycles are measured for part of the motion estimation and
all the other steps of video compression that performed on
the mobile device. For the AoM method, complete video
compression is performed solely on the mobile device, the
total CPU cycle consumption is measured when video is en-
coded by the Java H.264 encoder. The measurement result
is depicted in detail in Table 3.

In this measurement, we notice that CAME method can
save nearly 40% compared to the AoM method, that is ex-
actly what we are expecting. By transferring part of the
motion estimation to cloud server, CAME method do save a
lot on computation, approximately 50% of the motion esti-

Table 2: Transmission Energy Consumption in CPU
Cycles

Video Name | All on Mobile | CAME

Foreman 6.2987 x 10° | 2.0429 x 10°
Mother 4.6843 x 10° | 1.8814 x 10°
Flower 8.4291 x 108 [ 2.0201 x 10°




Table 3: Video Compression Energy Consumption
in CPU Cycles

Video Name | All on Mobile | CAME

Foreman 1.3225 x 10™ | 7.8689 x 10°
Mother 1.2650 x 100 | 7.5268 x 10°
Flower 8.0500 x 10° [ 4.7898 x 10°

mation computation can be reduced on mobile devices. The
test result also verifies that motion estimation accounts for
90% of total video compression time.

5.4 Total Energy Consumption

To evaluate the total energy consumption and calculate
how much energy we can save using the CAME method,
we simply add up energy consumption in transmission and
video compression in Table 2 and Table 3, and the results
are compared in Figure 5.

As shown in Figure 5, CAME achieves up to 30% total
energy saving on video compression and transmission com-
pared to the AoM method. This is a significant improve-
ment towards energy saving on mobile video compression
and transmission. Though the total transmission size in
CAME is larger than the AoM method, CAME saves con-
siderable energy on video compression, particularly for the
motion estimation.

Our experimental result suggests that 8 x8 mesh selection
mode achieve the best performance compared to 4x4 and
16x16 mesh selection modes. This is because in the 4x4
mesh mode, the mesh nodes uploading and mesh motion
vectors downloading data size is too large. In the 16x16
mesh mode, as the mesh node density is not enough, though
the mesh uploading and mesh motion vectors downloading
data size is small, the mobile device still need to perform a
large fraction of the motion estimation.

6. CONCLUSION AND FUTURE WORK

In this paper, we presented Cloud-assisted Motion Estima-
tion (CAME), a novel video compression scheme for mesh-
based motion estimation. By taking advantage of compu-
tational resource of the cloud server, our proposed method
significantly reduces the complexity of video compression on
mobile devices, which leads to considerable energy saving.
Experimental results showed that CAME is highly energy-
efficient. One drawback of this work may be the encoding de-
lay introduced by closed loop design of our scheme, which is
mainly due to transmission delay between client and server.

As part of our future work, we will consider some opti-
mization problems in our system, especially the coordina-
tion of wireless transmission between the cloud and mobile
devices, to achieve even lower transmission overhead and
higher energy-efficiency.
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