HARV: Harnessing Hybrid Virtualization to
Improve Instance (Re)Usage in Public Cloud

Silvery Fu, Yifei Zhu, Ryan Shea, and Jiangchuan Liu
School of Computing Science, Simon Fraser University
Email: {dif, yza323, rwsl, jcliu} @cs.sfu.ca

Abstract—In the public cloud market, there has been a
constant battle over the billing options of the cloud instances
between their providers and their users. The users generally
have to pay for the entire billing cycle even on fractional usage.
Ideally, the residual life-cycles should be resalable by the users,
which demands efficient resource consolidation and multiplexing;
otherwise, the revenue and use cases are confined by the transient
nature of the instances. This paper presents HARYV, a novel
cloud service that facilitates the management and trade of cloud
instances through a third-party platform to run buyers’ tasks.
The platform relies on hybrid virtualization, an infrastructure
layout integrating both the hypervisor-based virtualization and
lightweight containerization. It further incorporates a truthful
online auction mechanism for instance trading and resource
allocation. Our design achieves efficient resource consolidation
with no need for provider-level support, and we have deployed
a prototype of HARV on the Amazon EC2 public cloud. Our
evaluations on both micro-benchmarks and real-life workloads
reveal that applications experience negligible performance over-
head when hosted on HARV. Trace-driven simulations further
show that HARV can achieve substantial cost savings.

I. INTRODUCTION

TaaS (Infrastructure as a Service) has been a major form
of public cloud service deployment, and it is estimated the
IaaS market will grow from $15.1B in 2014 to $126.2B by
2026 [1]. State-of-the-art IaaS cloud providers generally offer
resources to users as virtual machine (VM) instances, and a
user has to pay for the full billing cycle of an instance even if
only a fraction of the cycle is to be used. Existing studies have
shown that this partial usage issue exists extensively among
cloud tasks [2]. As a matter of fact, 79.8% of cloud users
use less than 20% of billing cycle according to the previous
analysis [2]. There have been pioneer efforts toward fine-
grained resource provisioning and pricing to offer instances
that better match the user demands [2][3][4]. Unfortunately,
as we will show later, there is a trade-off in terms of cost-
effectiveness between a cloud provider and the users since the
former generally resists to refining the instance granularity.

An attractive alternative is to allow users to re-sell their
unused instances [5]. Having a cloud market allowing this
not only improves the utilization of cloud resources but is
beneficial for building a healthier cloud ecosystem [6]. This is
however easy said than done. To generate re-usable resources,
it is necessary to aggregate and consolidate the partially used
instances. Early solutions on resource consolidation are mostly
done from the provider-side, e.g., how to allocate virtual
machines given the limited number of available physical

machines [7][8][9]. To achieve similar goals from the user-
side in the public cloud, global knowledge of the physical
machine cluster will be needed, together with such operations
as VM live migration. It is hardly possible or feasible for a
public cloud provider to expose those low-level interfaces to its
users given concerns from security and network/system man-
agement. Such third-party solutions as Cloud Brokerage [10]
suggest that a wholesaler may purchase a large volume of
instances from the cloud provider and re-sell them to users
at discounted prices. While they do not require infrastructure
changes to the public cloud provider, the broker still operates
at the VM level; thereby the usage waste problem of the cloud
instances remains exist.

Moreover, maximizing the (re)usage efficiency demands
effective resource-multiplexing, i.e., allowing workloads from
more than one user to run together on an instance. Without a
proper implementation, this will lead to nested virtualization
that can introduce considerable performance overhead [11].
Maximizing the (re)usage efficiency also calls for novel pric-
ing mechanism beyond those offered by the public cloud
provider. Facing the ever changing availability of partially used
instances and the arrival patterns of their potential users, a
dynamic online solution is naturally expected.

In this paper, we show strong evidence that the partially used
instances are valuable resources, which, if properly recycled,
can remarkably improve the cost-effectiveness of public cloud
users. We also demonstrate that such an instance recycling
service is doable with limited overhead to both cloud users
and providers. In particular, we design and implement HARYV,
a third-party platform that HARnesses hybrid Virtualization to
both recycle cloud instances and manage their users’ tasks. The
hybrid virtualization seamlessly combines existing hybervisor-
based virtualization and containerization, and does not require
any change to the infrastructure of the existing public cloud
providers. We present a two-level scheduling policy in HARV
to simplify cluster resource management and ensure its appli-
cability with a public cloud. It also incorporates a truthful on-
line auction mechanism to determine the allocation of requests
and the corresponding recycling price. We have implemented
HARYV and deployed it with the Amazon EC2 public cloud.
Extensive experiments with real-world benchmarks and large-
scale simulations verify that HARV is highly scalable and
cost-effective. It achieves cost savings up to 24% on a typical
1-hour billing cycle, and 19% on the 15-minute billing cycle.

The remainder of this paper is organized as follows. We first

Launch Recycle
° " request | pre——
'%>| Initializing Running | k. Cleansed
\ Start/Stop Containerize
\ Reboot request
request Decommission I~
\ Stopped |« Managed
R Terminate /4 X
evenue Ny request VZ Auction

(Y X

~ K s
~ Terminated -
~ -

~ —_ = -

Fig. 1: Augmented instance life cycle

x10°

Total =—— >=15min

30 >=5min —+— >=30min q

0 40 80 120 160 200 240 280 320 360
Time (minute)

Fig. 2: The number of residual instances

explore the public cloud cost-effectiveness issues and present
a system overview in Section II. In Section III, we present
details about our system design, including its scheduling and
pricing policies. Extensive experiments and evaluations can be
found in Section IV. We review related literature in Section VI,
and finally conclude our work in Section VII.

II. BACKGROUND AND MOTIVATION

We start from investigating the (in)efficiency of state-of-
the-art billing options offered by IaaS cloud and how it affects
users’ cost-effectiveness. We argue that a recycling mechanism
is necessary for utilizing the residual time of cloud instances,
and suggest that hybrid virtualization is the key toward real-
world implementation and deployment.

A. Billing Inefficiency: Cause and Consequence

In Fig. 1, we depict the state transitions in a typical public
cloud instance’s life-cycle (the ones in solid lines). In general,
the provisioned instance is considered in the same billing cycle
as long as it stays in the Running phase; however, if the user
stops a running instance, a new billing cycle will begin when
it is restarted. It is because the cloud provider needs to release
the computing resources held by the instance (CPU cores,
memory, IP, etc.) when handling the stop request. As such,
when the user “restart” the instance, a new group of resources
has to be re-provisioned for it. Consequently, the user will be
charged for the newly provisioned resources, even if (in terms
of time) it still falls into the same billing cycle. Let T}, ctyq; be
the actual time a user utilizes an instance, and T, be the

1-hr: 10min smin 30min Smin

-nr: * * *
Smin: 47§ 4 ¥ 4 v K’
create 4 terminate ¢ e idle/waste

Fig. 3: Billing cycle: 1-hour vs. 5-minute

duration of the billing cycle, the residual instance time Try
can be calculated as:

(Tactual mod Tcycle) ()

In Fig. 2, we depict the number of potential residual
instances (Tcycie = 1h7r) per time slot during a ~ 6.5 hours
record duration in a real-world cluster. Each of the four lines
denotes an assumed Tr; range of the residual instances. The
data are extracted from one of the Google’s publicly accessible
traces [12]. Those Google-cluster traces have also been widely
used in other recent cloud resource provisioning studies as
well [7][10][13]. As shown, despite the fluctuation, there is a
constant supply of residual instances: about 10,000 to 20,000
with Trr > 15min, and the ones with Ty > 30min account
for nearly half of the total.

Define the waste ratio:

Wratio = TRI/Tactual (2)

which is bounded by Tty /Tactuar; given the actual usage
time is usually unpredictable, the smaller the T¢ycic, the less
likely a cloud user will overpay the billing. Had the cloud
providers adopted an ideal “per-second billing”, the billing
would have been efficient. Unfortunately, per-hour cycle is
still the dominant billing model in the current TaaS market
(e.g. Amazon EC2)!. Although there exist cloud providers who
offer per-minute billing after an initial time interval® such as
Microsoft Azure Cloud and Google Compute Engine, their re-
source offerings are different from EC2’s. For example, EC2’s
instance grants users nearly full control over the software stack
including even the kernel [14]. In addition, we conjecture it is
a business decision for the per-minute billing cloud platforms
to offer more competitive pricing schemes than their market
opponents [15] even if those schemes could yield a lower profit
margin as we will explain in what follows.

The above analysis raises the question: why IaaS providers
favor long billing cycles? In addition to other potential reasons,
we conjecture that a longer billing cycle will help compensate
and reduce cloud providers’ operational costs, especially the
costs for instance provisioning (e.g., instance creation, decom-
mission, VM image transfer, boot-time operations, scheduling
costs, etc.). To be specific, first, we can infer from Fig. 2 that
the duration of user jobs vary substantially with the majority
being short-term ones. We then extract the history a user’s job
requests during a 75-minute interval from the trace as depicted
in Fig. 3. Supposing this user will create an instance and runs

TRI = Tcycle -

I As shown later in this paper, even when the billing cycle is much shortened
(e.g. 15 minutes), our solution can still provide substantial cost savings.

2The initial time interval is usually 10 to 15 minutes which also leads to
potential billing inefficiency problems.

User-space

[Provider-space Application layer Application layer

VM/OS VM/OS Container Container

pers sees
poziIBUIRIUOD

Application layer

VM/0S VM/0S

Nested Hypervisor

Fes see|
pnojd d1and

Fig. 4: Hybrid virtualized layering in public cloud

several jobs spanning across our examined time interval, when
the billing cycle is an hour, the user may subsequently create
two instances with the first one covering three jobs in the
first hour (with a waste ratio 1/3). When the billing cycle is
shorter (e.g., 5 minutes), the user is allowed to timely terminate
the instance to avoid unnecessary billing cycle charges and
create a new instance upon the arrival of the next job (with a
zero waste ratio). On the provider side, however, the shortened
billing cycle leads to 2x more instance creations and thereby
surged provisioning costs.

Despite it being an ideal case for users who have pre-
cise cost management, we can expect most of the users
would follow such a pattern to avoid unnecessary billing if
shorter billing cycle were available. Hence, a longer billing
cycle could help reduce potential provisioning costs for cloud
providers. It transfers the complexity of consolidating work-
loads in the time dimension to cloud users, which could lead
to the billing inefficiency problem if not addressed.

B. Recycling Instances with Third Party

Given the resistance from the cloud service provider on
shortening billing cycles, a better alternative is to consoli-
date user-supplied residual instances, trade their computing
resources, and generate revenue. For brevity, we refer to the
cloud users who “recycle” their instances as sellers; those who
purchase resources as buyers. As illustrated in Fig. 1, the
instance life-cycles can be augmented with additional states
and transitions represented in dotted lines. Before a seller
decides to stop an instance, it can launch a recycle request,
with the necessary information to take over the instance and
immediately clean its states. Once the instance reaches the
cleansed state, it can be added back to the cluster management.
Buyers can purchase resources from the cluster at a market-
driven price, deploy their applications, and the resulting rev-
enue goes to the sellers. Each managed instance is associated
with a decommission deadline to ensure the seller not to be
charged for another full billing cycle.

While there are instances available for recycling as shown
earlier, the recycling is nontrivial to accomplish from both
the system’s perspective and the pricing perspective. Fig. 4
describes a hybrid virtualized layering structure in the public
cloud. At the very bottom sits the physical layer with bare-
metal machines, on top of which hypervisor is placed to

abstract and manage the underlying hardware. These two
layers are marked as the provider-space, as only the cloud
providers have access to resource management on these layers
for security reasons. As such, public cloud users are not al-
lowed to access these provider-space utilities, making resource
consolidation difficult at the user-space. Even worse, the
heterogeneity and highly transient nature of recycled instances
may significantly limit the compatible workload types. In
short, we are facing the following challenges:

o Managing a large amount of residual instances;

« Utilizing transient cloud resources efficiently;

« Identifying target workloads and providing platform-level
supports accordingly;

o Determining the resource price and scheduling policies.

To address the first two challenges, there is a need for an
additional virtualization layer on top of the existing one. It
will allow tenant isolation on the same recycled instance as
to achieve resource multiplexing. It is also a resource man-
agement layer where residual instances can be consolidated
even with no support from the provider. We emphasize here
that a third-party solution that does not rely on the provider
for recycling is necessary: 1. The instance’s billing cycle is
fully paid regardless of whether the owner chooses to recycle
it or not. 2. Providers could have higher operational costs
when residual instances are recycled, since those instances will
consume more resources as compared to when they are idle.
As such, without explicit incentives, providers themselves are
less likely to offer the recycling service on their own. More
discussion on the potential incentives is offered in Sec. V.

C. Why Hybrid-virtualization?

There are two potential candidates for building the ad-
ditional layer, namely nested virtualization®> and hybrid-
virtualization. As depicted in Fig. 4, in the original user-
space (left side of the figure), applications are run directly
in the provider-managed VM. With nested virtualization, the
applications are placed in the VMs managed by a nested
hypervisor, which is run on top of the original VM. By doing
so, each application in the same VM can now have their own
virtualized resource pool and isolated runtime environment.
This is seemingly a natural choice to facilitate resource
consolidation in the user-space [16][17]. However, placing
a hypervisor on top of another often results in excessive
overhead and application performance penalties [11]. Further
optimization would require tuning the underlying hypervisor

3Nested Virtualization in Xen: http://wiki.xenproject.org/wiki/Nested_
Virtualization_in_Xen

TABLE I: Performance of hybrid-virtualization

Resource Type (Benchmark) Bare-VM Hybrid-VM
CPU (7z Compression) 92.18Mbytes/s 92.26Mbytes/s
Memory (Sysbench, Read) 10.84Gbytes/s 10.85Gbytes/s
Memory (Sysbench, Write) 10.49Gbytes/s 10.08Gbytes/s
Disk (Bonnie++, Rewrite) 119.95Mbytes/s 118.22Mbytes/s
Network (Iperf, TCP Send) 126.60Mbytes/s 126.59Mbytes/s
Network (Iperf, TCP Recv) 126.53Mbytes/s 126.50Mbytes/s

resides in the provider space, which unfortunately is not
allowed in the public cloud in general.

On the contrary, the alternative technique leverages both
the traditional virtualization and the emerging lightweight
containerization, which we refer to as hybrid-virtualization. In
hybrid-virtualization, application containers are placed insides
virtual machines. The container, in its simplest form, is a
collection of OS kernel utilities (e.g. cgroups) configured
to manage the resources that an application uses. With con-
tainers, resources are monitored and managed through efficient
function hooking devised in only the non-performance critical
execution paths, thereby incurring much lower overhead.

To validate this, we provisioned four m4.2xlarge general
purpose instances from Amazon EC2 cloud, powered by 8x
vCPU on Intel Xeon Haswell processor, 32 GB memory, high-
throughput SSD storage, and enhanced networking. In the non-
containerized test (the baseline), benchmarks were run directly
in the host VM. For container virtualization, we installed the
latest version of docker*, the mostly widely used container
implementation. In Table. I, we present the experimental
results. As we can see, for CPU, containers are able to attain
the compression speed within £0.1% against the native VM.
A closer look at the MIPS number confirmed that container
does not consume more CPU cycles in compression. Similar
observations can be made on the disk, memory, and network
tests. These results indicate that hybrid-virtualization is able to
complement today’s public cloud infrastructure with another
lightweight resource management layer, and thereby has the
potential of supporting the instance recycling framework with
limited performance penalties.

III. HARV: SYSTEM DESIGN, OPTIMIZATION, AND
IMPLEMENTATION

We designed and implemented HARYV, a third-party platform
that HARnesses hybrid Virtualization to realize the instance
recycling mechanism. In this section, we first illustrate the
design considerations of HARV. We show how HARV uses
a two-level scheduling policy to simplify cluster resource
management while improving its applicability. We show how
it handles workloads with different persistence and duration
requirements. Further, we design a truthful online auction
mechanism to complement our system.

A. Cluster Architecture

In Fig. 5, we describe the architectural design of the
HARV. Our cluster consists of recycled/residual instances from
contributors, a state manager module in charge of cluster state
updates, and a Tier-1 scheduler handles container allocation.
Tier-2 scheduler and load balancer are two complementary
modules incorporating the two-level scheduling policies, and
can be customized by the buyers themselves. The state
manager holds a consistent state information of the cluster,
including details on each active residual instance, the available
resources, and their decommission deadline. It is also in

4Docker Container: https://www.docker.com/

Container

State Manager

State Update

i : Recycled
Lo VM

On-demand
VM

Batch Task

Tier-2 Scheduler

Web/Application |
Server

. Database |

<n/a, res3>

<ddI2, res2>,

i
i
Application fi
Requests i Managed !
i Instances !

Load Balancer

Container
Allocation

Tier-1 Scheduler

Fig. 5: Cluster architecture with two-level schedulers

charge of detecting failures of residual instances and containers
through keep-alive messaging. Upon the arrival, failure, or
decommission of each residual instance, the state manager
updates the state table and notifies Tier-1 scheduler.

Containers are allocated based on our auction mechanism.
As shown in Fig. 5, five containers are placed in the leftmost
instance, including two for web servers and three for batch
tasks. Those containers may have different arrival time, dura-
tion, and ownerships. Meanwhile, each component of an ap-
plication is encapsulated in different containers and scheduled
across the cluster. By allowing such, we can achieve not only
resource consolidation but also better resource multiplexing
and statistical multiplexing in the user-space.

B. Two-level Scheduling

Algorithm 1 Request dispatch algorithm

1: while Receiving request ¢; do

2 u; = g;.getUserID()

3 if ¢;.isContainer Request() then
4: S = MS.getCurrentInstances()
5: T = Ri.getResourceVector()
6: if s; = () then

7 T'1.decline Request(q;)

8: else

9: M S.update(s;, ;)
10: end if
11: else
12: T2; = MS.getT2Scheduler(u;)
13: T2;.scheduleWorkload(g;)
14: end if

15: end while

Another advantage brought by the hybrid-virtualization
is allowing us to separate cluster-level scheduling and
application-specific scheduling. Specifically, HARV does not
schedule user-provided jobs directly. Instead, it only decides
the container allocation on residual instances, improving re-
source utilization, and optimizing recycling efficiency. We
employ the auction algorithm, described in Sec. III-C, as the
cluster-level scheduler (Tier-1) for this purpose.

Meanwhile, the application-specific scheduler (Tier-2) en-
ables buyers to deploy customized scheduling policies. This
is because, intuitively, users are the ones who ultimately
decide how to effectively use their provisioned containers,

Symbol Description
MS Cluster state management service
T1,T2; Tier-1 scheduler and Tier-2 scheduler supplied by user i
S; Instance ¢
T; Resource vector < ddl;,res; >
b; Bid with request 4 (when use auction-based scheduling)
u; The utility when b; is satisfied
qi Request i: < w;, 74, (b;) >
R; Capacity of resource type 7 in an instance j
S Total number of instances
R Number of resource types
T The expected maximum running time of the system
L, U, Lower and upper bound of per unit resource valuation
tmin Minimum requested time of all bids
ti, b Requested time for bid i and residual time for instance j
a7 Demand of resource type r in a bid ¢

TABLE II: Table of notation

since the usage pattern is best understood by themselves.
Upon receiving a request, the cluster will run the dispatch
algorithm to determine whether it is a container request or an
application request, and consult to the (Tier-1 or -2) scheduler
accordingly. We give the details of the request dispatch process
in Algorithm. 1, with symbols described in Table II.

Following the two-level scheduling, buyers need to submit
their requests with specifications on containers, by which the
Tier-1 scheduler decides where to allocate them, considering
both the decommission deadline and resource constraint. Sam-
ple specifications are listed in Table III with specifications for
database, web server, and batch job containers. Here CPU is
expressed in relative units, where the higher the amount, the
more CPU share the container can obtain. The maximum unit
that can be specified for a CPU/vCPU is 1024.

C. Tier-1 Scheduling and Instance Trading

An integral component of our cloud system is this container
allocation scheduler (Tier-1) as well as a market mechanism
to facilitate the trading of recycled instances. To this end,
we built an auction-based instance trading module to meet
both requirements. Current pricing scheme in cloud markets
is still fixed price dominant which usually does not lead
to an efficient market. Auctions have been widely used to
determine the clearing prices that reflect the demand and
supply relationship in the market [8]. Our system differs from
the previously studied scenarios in that (1) the resources are
inherently constrained by each instance that are holding them.
Treating each type of resource as a monolithic resource pool
like previous works did is not applicable to our system; (2)
Instance pool in our system is dynamic. To this end, we
carefully modify the state of art auction mechanism [18] into
our problem. The detailed algorithm is presented in Algo. 2,
where the symbols used are listed in Table. II.

We set binary variable x; ; equal 1 if a container request 7 is
allocated to instance j, otherwise, this container request will
not be satisfied by HARV. Our unit price updating function

is defined as A\, ; UT gmise

U" = max; fi’— The intuition behind this pricing function
such is that the smaller the 3, the fewer resources are left

, where L" = mini%,
i

Algorithm 2 Online auction algorithm (OA)
tminL”

1: Initiate A, ; = e w5 = 0, L7, U"
2: while Receiving bid ¢ do
3: Calculate utility:u; = b; — Y Ap;d;

4 ifu;>0andt <t then
5: j* = argmaxj(bi = > Arjdi), Tige =1
6 pi =22 Arjedi
7: Update dual variable: 7. = W,
J
T mnﬂnLr B
8: Arge =U ZzTRSU"”
9: else
10: zi; =0
11: end if

12: end while

in the system. Once [equals zero, the marginal price is
set to be the upper bound of the user’s value per unit of
resources. Under such circumstance, no bid can win the
auction, guaranteeing the capacity constraint is satisfied. We
are allowing as many requests as we can to be satisfied by the
platform in the beginning, and becoming more conservative
with the diminishing of resources.

Though the competitive ratio claimed in the original mecha-
nism cannot be guaranteed anymoref’, our modified mechanism
can still guarantee truthfulness and individual rationality,
two important economical properties of a good auction. The
individual rationality is guaranteed by our designed algorithm
by ensuring that the utility for each selected requests is
nonnegative. Since the pricing scheme of this mechanism falls
into the family of sequential posted price mechanisms [19]
in which truthful bid reporting is a dominant strategy, our
algorithm guarantees the truthfulness in bid value.

D. Details in Resource Allocation and Sharing

HARV relies on the cgroups kernel feature to enforce the
resource allocation decision made by the Tier-1 scheduler, and
the namespace isolation Kernel feature to enable shar-
ing of resources among multiple buyers on the same residual
instance. Specifically, each buyer’s workload is encapsulated
in a container which is associated with a resource vector r€s;
given in the buyer’s request. Through container management
tools, HARV translates the resource vector into corresponding
control groups (cgroups), a collection of kernel controllers for
system resources including CPU, memory, network and disk
I/0. These controllers are assigned to the container runtime
in the form of function hooking. When the container starts
running, its resource access will trigger the corresponding
hooks to ensure that the container does not use more than
its resource share. Further, each container will be assigned a
unique set of resource identifiers for its PID, IPC, network, and
file system etc., providing it a runtime environment isolated
from other co-located containers’. HARV creates a software

SWhile we leave the design of a more competitive mechanism as future
works, our current mechanism is able to achieve high social welfare and cost
savings, as we will show in Sec. IV.

Job Type Duration (min) Persistence CPU Units Memory (MB) Network (Mbps) Storage (GB) Port
Web Front-end Server 35 No 256 100 200 0.1 80
Database n/a Yes 256 500 200 50 n/a
Sysbench 35 Yes 1024 512 100 0.5 n/a

TABLE III: Sample container request specifications given job types

bridge to allow co-located containers to share the host VM’s
network (with packet forwarding, NAT, and DNS configured).

E. Relocating/Migrating Containers

HARYV is able to handle long-term task/containers through
container migration. It configures the Linux CRIU (Check-
point/Restore In Userspace) utility to checkpoint a running
container, creates image files, sends those files to the next
running destination, rebuilds and restarts the container. An
advantage of this approach is that applications usually have
dependencies such as OS binaries, third-party packages etc.,
while the container is able to encapsulate those runtime
dependencies, making it convenient to restart an application
without manually reconfiguring underlying host instance. Be-
sides, buyers themselves (or the Tier-2 scheduler) can handle
the instance decommission through data migration.

For batch tasks, migration can be efficient given it pre-
serves computed results. For applications such as web front-
end server, when instance decommission occurs, instead of
migrating containers, a perhaps more efficient way is to simply
treat it as container failures, and reassign the job to containers
launched in other instances. It is worth noting that, in current
version of our platform, there will be a service downtime from
a few seconds to minutes depending on the check-pointed
image size. Although batch tasks should not be affected much,
those service downtime may not be tolerable for some user-
facing applications.

F. Target Workloads

HARY is an ideal platform for running short jobs or the ones
with limited persistent data. A variety of applications fit in
this category, either in data processing including MapReduce
accelerator [20], or the web front-end servers. We categorize
the potential workloads for HARV and handling approaches
based on their persistence and duration (long-term when user-
specified duration exceeds the maximum allowable residual
hour) as follows.

Long-term Stateless and Short-term Stateless HARV runs
them in recycled instances and handles instance decommission
through migrating or replicating containers (treats the decom-
mission as an instance failure).

Short-term Stateful A migration deadline will be set for
tasks of this kind. The larger the amount of state data, the
earlier it is set prior to decommission deadline.

Long-term Stateful Since frequently migrating these jobs
can be cost-prohibitive, our current version of HARV handles
them by provisioning on-demand or reserved instances from
the cloud provider, e.g. the database server shaded in dark
gray in Fig. 5. Buyers can also launch those jobs in their own

(non-recycled) public cloud instances while linking them to
the accelerators deployed in recycled instances.

IV. EVALUATION

In this section, we present the results of system-level
benchmarking and trace-driven simulation on HARV. We show
that HARYV is able to attain high application performance with
substantial cost savings.

A. System-level Evaluation

1) Prototype and Benchmarks Setup: We deployed a pro-
totype of HARV with Amazon EC2 public cloud. We used
docker as the containerization tool for the hybrid-virtualization
setup. We run the master node that accepts instance recy-
cle requests and hosts Tier-1 scheduler in an On-demand
m4 . 2x1large instance. We configured Amazon ECS service®
to handle cluster state management (namely the state manager
module). We modified its agent program to integrate it with
the Tier-1 scheduler. Notably, except for the state management
module, no other EC2 services were used in our system.
Since such a module is commonly available in major cloud
providers’, HARV can be easily ported to other cloud plat-
forms. Our testing cluster contains a maximum of a hundred
residual m4.large instances. We chose the following two
representative types of workloads:

Multi-tier Web Service: We used the RuBBoS?® on-line
forum benchmark to model the multi-tier application service.
The number of containers provisioned for running the web and
application servers is equal to the initial amount of recycled
instance whose specifications are shown in Table III. We set
up a load balancer for the web servers and deployed an
emulated HTTP client® on an on-demand m4 . large instance
to request web pages from the server with different numbers
of concurrent connections. We selected the average request
rate and average request completion time as the performance
metrics. We also sampled and calculated the average queue
length in the load balancer.

Batch Task: We created batch workloads by devising a
script that runs sysbench multi-threaded benchmark re-
peatedly (with a short sleep time between each run). We
provisioned its container as specified in Table III.

We began the test by running only one recycled instance
with one web server container and one batch task container
requested. We used the HTTP client to launch page requests

6 Amazon ECS: https://aws.amazon.com/ecs/

7Azure Container Service Cluster: https://azure.microsoft.com/en-
us/documentation/articles/container-service-deployment/

8RUBBoS Bulletin Board Benchmark: http://jmob.ow2.org/

9 Apache Benchmark: https://httpd.apache.org/docs/2.4/programs/ab.html

10000 16.8

9000 10000 10-Conn memm Recycle —e—
= 10-Conn 10-Conn mwmm 100-Conn Baseline
E 6000 1590-Conn < 1000 1000-Gonn 1000 | 1000-Conn 16.7
g S £ 2 166 o e
g & 100 £ 100 S T - " ~
$ 3000 | E <3 $ 165
o 10 ©
£ I I I 10 16.4
. 1 Ny
Gt S o B D Y RS . 163
6‘»47 6’»47 S o % D Y, 7 8 R N
Number of Recycled Instances Number of Recycled Instances Number of Recycled Instances Number of Recycled Instances
(a) Average Request Rate (b) Average Request Completion (c) Average Queue Length in Load (d) Average Batch Task Completion
Time Balancer Time
Fig. 6: Real-world web application performance on HARV
6
16 X10 16 30 - ;
OA mmmm OA mmmm <=6min - ©— <=40min
14 7 OA-linear 14y OA-linear 7 - <=10min —& - <=1hr
%12 H Sim S 12t Sim § 25 p-<=15min
<10 o 10 r]
© 1) o
X g g g e —e.
= c c \ e - 0]
2 6t L gt [@ —
8 2 2 - Bl
0w 4r e 4 g 15
2 r 2 r
0 N & S = 9 < 0 N7 & S = 9 < 10 N @ 6‘) 9 N4
(o) (@) (#) [“ < Q. (@) (&) (@) “ < (o) (@ (&) Q @ <
2 % Y D D % > @ D D D % 2 2 v D D %
Number of bids Number of bids Number of bids
(a) 1 hour Lifecycle Social Welfare (b) 1 hour Lifecycle Cost Saving (c) 1 hour Lifecycle Cost Saving for Short Jobs
. with OA
g 10 8 20 .
OA mmmm OA mmmm <=5min - ©—
Tr OA-linear . 7r OA-linear] ~ 189 <=10min —& -
% 6t Sim g 6t Sim S ~ o <=15min
T 5 g 57 & 16N
24 S 4t s TE--E,
g3y g 3| G 14 N
] 2 o B—B=-o
8 2t o 2L o) N
a o 12 !
1r 1r
0 &7 s S = 9 < 0 N % S = o) < 10 N x‘? :5‘ ‘) i9 4
(o) (0 (2 [(9} < (o) (o) (o) [} (o) < (o) (0 (o) [@) (0 <
2 Y D D % > v D D D 9 £ % % % % %

Number of bids
(d) 15 minutes Lifecycle Social Welfare

Number of bids

(e) 15 minutes Lifecycle Cost Saving

Number of bids

(f) 15 minutes Lifecycle Cost Saving for Short Jobs
with OA

Fig. 7: Comparison of different online mechanisms in social welfare and cost saving

with 10, 100, 1000 concurrent connections consecutively.
We collected the average request rate, throughput, request
completion time as well as the number of queued requests
in the load balancer. To ensure fairness, we waited until the
load balancer queue was emptied before starting each new test.
The client emulator is placed on an on-demand instance within
the same cloud region in order to minimize the interference
from the network. We then changed the number of recycled
instance, the number of server container, and the number of
batch task container to 5, 10, 25, 50, and 100, and repeat
these tests. Finally, we obtained the baseline performance for
both benchmarks by running each of them in a single, non-
containerized m4 . large instance.

2) Results: We present the benchmark results in Fig. 6.
As shown in Fig. 6a, the baseline performance with a single
m4 . large instance (the “Bare-VM?”) is considerably higher
than the single recycled instance case. This is due to, in the
former case, the web servers being allowed to use all of the

VM resources; whereas in the latter the servers are run in
containers, and they have to share the resources with other co-
located containers, thereby experiencing lower performance.
Nonetheless, the average request rate immediately catches
up with the baseline when there are five recycled instances
and more. The effect of scaling out is also significant when
there are more concurrent connections. For example, when
the connection is 1000, an additional 50 recycled instances
doubles request rate from around 2500 per second with 50
instances to near 5000 with 1000 instances.

Similarly, in Fig. 6b, the more recycled instances joining the
HARV cluster the less the time to complete requests, with the
average request completion time dropping from above 3000
ms the highest to 300 ms the lowest for 1000 connections.
Particularly, when the number of recycled instances is higher
than 10, the request completion time stays lower than the
baseline across all concurrent connection settings. To confirm
the effect of scaling, we depicted the average queue length

in the load balancer in Fig. 6¢c. As can be seen, when the
number of recycled instances is lower than 10, substantial
amount of requests are buffered in the load balancer’s queue,
especially when the system experiences high concurrent con-
nections. This high-buffering leads to the excessive delay in
the request completion as observed in Fig. 6b. With more re-
cycled instances and more web server container allocated, the
queue length plummets, because requests can be immediately
dispatched to available or idle servers. These results indicate
that the additional container layer poses a minimal impact on
user-perceived application performance. Considering the low
(monetary) cost of HARV containers, HARV is a good choice
for web service providers to provision for demand peaks.

For the performance of the batch tasks in Fig. 6d, the
average job completion time stays almost unaffected through-
out the experiments. As aforementioned, we assigned a better
part of VM resources to the Sysbench container. This shows
that in HARYV, even if applications (with different resource
usage patterns) share the same residual instances, HARV
can still maintain their performance through differentiating
the resources usage priorities. We attribute this achieved
performance isolation to the use of containerization with each
running container assigned an independent OS namespace and
resource control groups (e.g. cgroups in Linux).

Finally, we measured the management module overhead.
We found that when the recycled instance cluster is not
trivially small, the overhead of running HARV is negligible.
The management overhead (excluding the user-level overhead,
e.g., the load balancer and Tier-2 scheduler) originates from
the master node, state management module, Tier-1 scheduler,
and the agent program on each recycled instance. In terms of
monetary costs, the master node (running on m4.2xlarge
On-demand instance in our prototype) costs $0.479 per hour,
an affordable price (in the real deployment, HARV can transfer
some of the revenue to cover this cost) that can be further
reduced by provisioning the cheaper reserved instance as the
module will be running constantly. There is no additional
charge for the state management module from EC2'°. In terms
of performance overhead, HARV takes 67.5 seconds (averaged
over 100 instances) to setup a recycled instance, a process
that includes instance cleansing, agent program installation,
and containerization; and 4.2 seconds to handle a request (the
time between receiving the request and starting the container;
averaged over 5000 requests). For the agent program, HARV
consumes less than 5% of CPU, limited memory footprint and
network bandwidth. The results indicate that the time HARV
takes to manage a recycled instance is considerably shorter
than the billing cycle, leaving most of the residual instance
time available to recycle.

B. Large-scale Trace-driven Simulations

1) Experimental Settings: In this part, we conduct sim-
ulations to evaluate the effectiveness and scalability of our
trading module (Tier-1 scheduler). We select the publicly

10 Amazon ECS Pricing: https://aws.amazon.com/ecs/pricing/

accessible Google Cluster trace [12] (also used in Sec. II),
consisting of 3,535,030 entries, reporting each tasks’ ID, active
time, normalized resource demand (CPU, Memory), as well
as task types, in an approximately 6 hours period. The time
interval between each report update is 5 minutes. We identified
176,580 unique tasks after removing the reported anomalies,
combining different entries that belong to the same task and
calculating their durations.

To simulate the residual instances, we firstly assume
each task request will be handled by a single on-demand
VM/instance, and compute the corresponding residual instance
information, including the time it being recycled as well as the
residual hour according to Formula 1. Our event-driven simu-
lator read the entries sequentially while checking the “current
time” of the cluster; it adds and removes a residual instance
to simulate the recycling and decommissioning process. Each
requests are submitted to the scheduler; unsatisfiable requests
are simply omitted.

2) Performance Metrics: We use cost saving and social
welfare as our performance metrics. Cost saving is defined as
the percentage of saving can be achieved by using our trading
system compared with directly buying on-demand instances.
Social welfare is the sum of utilities of all users and the
auctioneer (i.e., > (b; — > Ap;dl + > A ;dY) = D b;), as

defined in Algo. i an indiTcator on hov& efficiently our system
allocates resources to users who want them most. We test
the system performance under different instance lifecycle. We
choose 1 hour since it is one of the current prevalent instance
life time settings. We also choose 15 minutes as the lifecycle
to reflect current trends in designing fine-grained resource
provisioning scheme in academia.

3) Trading Systems Compared: We compare our instance
trading system with other one-off sale markets where an
instance will only be sold once (i.e., no recycling will
be involved). We implemented the online auction algorithm
(Sec. ITI-C) in our trading system, whereas we adopted two
other allocation algorithms in the one-off market. First, we
adopted the similarity-based scheduling policy (Sim). In Sim,
the vector similarity is computed between the container re-
quest vector and the instance vectors, and the instance with
the highest similarity score is chosen to satisfy the request.
Sim is a representative heuristic that being used frequently
in designing cluster scheduling algorithms [21]. The second
algorithm is the online auction mechanism with linear dual
variable updates (OA-linear). In OA-linear, we change the dual
variable update function in Algo. 2 to a linear function to
validate the effectiveness of the original, exponential function.
Finally, the pricing scheme in Sim is fixed, whereas OA and
OA-linear both implement dynamic pricing.

4) Results: We present the experimental results in Fig. 7.
First, as shown in Fig. 7a, given I-hour lifecycle (current
EC2 billing cycle setting) the proposed trading system with
OA algorithm consistently achieves higher social welfare than
the other two methods in a flat-rate market. Further, similar
observations can be made in Fig. 7d where the lifecycle

is reduced to 15 minutes. Notice that social welfare using
15 minutes lifecycle decreases when compared with the 1-
hour counterpart is because we have fewer requests in the
trace to be satisfied by the 15 minutes long instance. Though
smaller billing cycle results in fewer resources available on the
market to accommodate container requests, OA still achieves
considerably higher performance than the other two methods.

Second, OA is able to maintain the cost savings even when
the resource contention is high. In Fig. 7b, the cost saving
of OA achieves 14% at 1,000 bids, and sustains over 10%
except for the 12,000 bids scenario. For the other two methods,
however, the cost savings drop from nearly 14% (OA-linear)
and 13% (Sim) to below 10% when there are more than 3,000
bids, and plummet to around 5% at 12,000 bids. Cost savings
of OA in 15 minutes lifecycle in Fig. 7e also exhibit similar
superiority. Notably, even OA-linear implements a dynamic
pricing scheme and Sim a fixed one, OA-linear achieves no
better social welfare and cost savings than Sim. This confirms
the importance and superiority of the pricing function in OA.

Third, in Fig. 7c and Fig. 7f, we intend to show the cost
saving effects of our system to the jobs with different lengths.
In the 1 hour lifecycle, our system constantly brings over 15%
cost saving gains to all jobs with less than 40 minutes duration
in all tested scenarios. Jobs with less than 5 minutes duration
maintain around 20% cost saving. As we have explained
before, the reduction of lifecycle brings less space for requests
consolidating, which leads to smaller cost savings. However,
jobs with less than 10 minutes duration still can benefit from
15% cost saving in 1000 bids to 12% cost savings in 12000
bids. As a conclusion, our auction-based trading system can
achieve significant performance gain as compared to those
one-off markets with either flat-rate or dynamic-rate.

V. DISCUSSION

Before concluding our paper, we discuss the following is-
sues pertaining to the adoption and practicality of the instance
recycling service.

Provider’s Incentives and Support: Although HARV tack-
les the general, third-party instance recycling problem where
we assume the absence of cloud providers’ support, there are
indeed incentives for providers to support such service. Similar
to Amazon EC2’s spot instances (or Google Compute Engine’s
preemptible VMs), recycled instances is a cost-effective choice
for certain types of workloads (see Sec. III-F). They both
allow users to buy non-standard computing resources with
a (likely) much lower price. On the other hand, there are
major differences between recycled and spot instances. First,
recycled instances can not only save costs for users who want
to buy resources but also those who sell them, i.e., the residual
instances owners. Second, unlike spot instances, recycled
instances do not preempt workloads which allows users to run
workloads that are not interruptible. Third, the resource offer-
ing of recycled instances are containers as opposed to VMs
in spot instances. As such, while spot instances has become
a widely used service, cloud providers can exploit recycled
instances as another form of differentiated, value-added service

to attract diverse user groups, gain extra revenue, and further
improve their resource utilization. Cloud providers can either
cooperate with a third-party instance recycling platform or
build one themselves. Within the extent of our knowledge,
HARYV is the first work that addresses the motivation and
technical challenges for building such service.

Trust and security issues: Trust and security issues have
been one of the biggest concerns over cloud computing in
general [22]. On the one hand, HARV targets for major public
cloud deployment only and thereby these issues are not as
pronounced as in other platforms relying on private, customer-
supplied resources (e.g., from a private cloud or PCs) [23].
On the other hand, instance recycling indeed introduces new
trust and security challenges. For example, residual instances
suppliers and buyers should not have each other’s data. In
addition, malicious workloads should be prevented from sabo-
taging other co-located workloads. HARV relies on containers
to provide resource isolation as discussed in Sec. III-D. At
the policy level, the supplier is required to grant root priv-
ileges to HARV in order to successfully submit a residual
instance to HARV (and they can choose to wipe out their
data beforehand). HARV will then drop the supplier’s root
privileges and limit the local container manager to root access
only (i.e., the docker daemon in our prototype). Notably, even
if suppliers give up the root privileges, they will still be
able to terminate the instance or modify its running through
the cloud providers’ API. Although HARV can blacklist the
untrustworthy instance suppliers, a well-rounded solution in
this case would require cloud providers’ support. Moreover,
advancements on cryptography allow more types of privacy-
sensitive workloads to be run on third-party platforms such
as HARV. For example, Order Preserving Encryption has
been effectively used to preserve client’s confidentiality for
middlebox workloads running on the third-party cloud [24].
While in this paper we focus on other design dimensions of
instance recycling, we will continue to address the trust and
security issues in our future works.

VI. RELATED WORK

Both cloud providers and users are faced with the resource
inefficiency problem. While cloud providers have the luxury
of improving their resource provisioning methods, cloud users
may only leverage existing pricing options and/or application-
level scheduling to alleviate the issue. HARV provides an
alternative solution for cloud users by enabling them to resell
their underutilized resources.

Resource Provisioning: Facing the resource inefficiency
in current laaS cloud, a substantial works have been
done on designing fine-grained resource provisioning meth-
ods [8][25][26]. Most of these works focus on solving resource
allocation problems from the provider’s perspective, and they
all operate on VM level. HARV can be treated as a cloud
provider. Different from these works, HARV operates on
containers for resource provisioning and does not belong to the
TaaS category. The advancement of containerization techniques
opens opportunities for cloud providers to supply flexible

and efficient cloud resource offering. Containers bring less
CPU consumption, less reboot time, smaller image size as
compared to hypervisor based VMs [27]. They also introduce
little application performance overhead as shown in our paper.

Pricing Options: Extensive works tried to improve cost-
effectiveness for cloud users by leveraging and improving
the existing pricing options [20][28][10]. Chohan et al. [20]
explored the Spot Instance option to accelerate MapReduce
jobs with greatly reduced monetary cost. Wang et al. in [10]
exploited the Reserve option, and proposed a dynamic in-
stance acquisition scheme that minimizes the broker’s cost to
accommodate given demands. Instead of exploiting existing
billing options, we tackle this issue by introducing a new cloud
instance type, which can be used jointly with those existing
frameworks, too.

Customer-supplied Cloud: Wang er al. [23] studied a
customer-supplied cloud (SpotCloud), where resources are
provided from user’s own physical machine instead of the
public cloud. HARV can be viewed as a customer-supplied
cloud, too. The major difference between HARV and Spot-
Cloud is that HARV’s resources are from the public cloud only.
Compared to the residual instance we studied, a SpotCloud
machine could introduce greater performance variance and
trust issues.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed an instance recycling mechanism
to address the prevalent partial usage waste problem faced by
users in public TaaS cloud. We designed and implemented a
system (HARV) to enable efficient instance recycling. HARV
incorporates a container-virtualized layer to enable resource
orchestration without provider-level supports. HARV adopts a
two-level scheduling policy which offloads application-specific
scheduling to its buyers while it only handles container alloca-
tions. Further, we designed an instance trading module, with
an online auction to determine the market price. Evaluation
on real-world workloads demonstrates HARV’s practicality
and scalability; and the large-scale simulation shows it can
achieve considerable cost savings, even when the life-cycle is
significantly shortened.

For future works, we plan to extend HARV to handle those
non-residual instances. Cloud instances are often underuti-
lized [7], if not completely idle, and those underused portion
of resources can as well being reused. This will result in a
generalized definition of residual instances, i.e. the instances
with residual resources. New challenges will emerge from
this more general problem, including how to estimate residual
resources with precision and design pricing scheme with
finer-granularity. Nevertheless, with HARV demonstrating the
feasibility and benefits of instance recycling, we believe those
challenges are worth addressing.

ACKNOWLEDGMENT

This research is supported by an Industrial Canada Tech-
nology Demonstration Program (TDP) grant, an NSERC Dis-
covery Grant, and an E.-W.R. Steacie Memorial Fellowship.

[1]
[2]

[3]
[4]
[5]

[6]
[7]

[8]

[9]

[10]
(11]
[12]

[13]

[14]

[15]

[16]

(17]
(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

REFERENCES

R. Finos. Public cloud market forecast 2015-2026. [Online]. Available:
http://wikibon.com/public-cloud- market-forecast-2015-2026/

H. Jin, X. Wang, S. Wu, S. Di, and X. Shi, “Towards optimized fine-
grained pricing of iaas cloud platform,” IEEE Trans. Cloud Computing,
vol. 3, no. 4, 2015.

A. A. Hossain and E.-N. Huh, “Refundable service through cloud
brokerage,” in Proc. IEEE CLOUD, 2013.

Y. Song, M. Zafer, and K.-W. Lee, “Optimal bidding in spot instance
market,” in Proc. IEEE INFOCOM, 2012.

0. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“The rise of raas: the resource-as-a-service cloud,” Communications of
the ACM, vol. 57, no. 7, 2014.

A. Bestavros and O. Krieger, “Toward an open cloud marketplace: Vision
and first steps,” IEEE Internet Computing, vol. 18, no. 1, 2014.

L. Chen and H. Shen, “Consolidating complementary vms with
spatial/temporal-awareness in cloud datacenters,” in Proc. IEEE INFO-
COM, 2014.

L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in cloud
computing: A randomized auction approach,” in Proc. IEEE INFOCOM,
2014.

F. Hao, M. Kodialam, T. Lakshman, and S. Mukherjee, “Online al-
location of virtual machines in a distributed cloud,” in Proc. IEEE
INFOCOM, 2014.

W. Wang, D. Niu, B. Li, and B. Liang, “Dynamic cloud resource
reservation via cloud brokerage,” in Proc. IEEE ICDCS, 2013.

D. Williams, H. Jamjoom, and H. Weatherspoon, “The xen-blanket:
virtualize once, run everywhere,” in Proc. ACM EuroSys, 2012.

J. L. Hellerstein, “Google cluster data,” Google research blog,
Jan 2010, posted at http://googleresearch.blogspot.com/2010/01/
google-cluster-data.html.

X. Zhang, Z. Huang, C. Wu, Z. Li, and F. C. Lau, “Online auctions in
iaas clouds: Welfare and profit maximization with server costs,” in Proc.
ACM SIGMETRICS, 2015.

M. Armbrust et al., “Above the clouds: A berkeley view of cloud
computing,” Dept. Electrical Eng. and Comput. Sciences, University of
California, Berkeley, Rep. UCB/EECS, vol. 28, no. 13, 2009.
Gartnermq 2016. AWS’s a leader in the IaaS market. [Online]. Available:
https://aws.amazon.com/resources/gartner-2016-mq-learn-more/

P. Sharma, S. Lee, T. Guo, D. Irwin, and P. Shenoy, “Spotcheck:
Designing a derivative iaas cloud on the spot market,” in Proc. ACM
Eurosys, 2015.

M. Ben-Yehuda et al., “The turtles project: Design and implementation
of nested virtualization.” in Proc. USENIX OSDI, vol. 10, 2010.

N. R. Devanur and Z. Huang, ‘“Primal dual gives almost optimal energy
efficient online algorithms,” in Proc. ACM-SIAM SODA, 2014.

S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan, “Multi-parameter
mechanism design and sequential posted pricing,” in Proc. ACM Sym-
posium on Theory of Computing (STOC), 2010.

N. Chohan et al., “See spot run: Using spot instances for mapreduce
workflows,” in Proc. USENIX HotCloud, 2010.

R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in Proc. ACM SIG-
COMM, 2014.

S. Pearson and A. Benameur, “Privacy, security and trust issues arising
from cloud computing,” in Proc. IEEE CloudCom, 2010.

H. Wang, F. Wang, J. Liu, and J. Groen, “Measurement and utilization
of customer-provided resources for cloud computing,” in Proc. IEEE
INFOCOM, 2012.

C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
Securely outsourcing middleboxes to the cloud,” in Proc. USENIX NSDI,
2016.

G. Feng, S. Garg, R. Buyya, and W. Li, “Revenue maximization using
adaptive resource provisioning in cloud computing environments,” in
Proc. ACM/IEEE Grid, 2012.

M. Hadji and D. Zeghlache, “Minimum cost maximum flow algorithm
for dynamic resource allocation in clouds,” in Proc. IEEE CLOUD,
2012.

L. Li, T. Tang, and W. Chou, “A rest service framework for fine-grained
resource management in container-based cloud,” in Proc. IEEE CLOUD,
2015.

L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How to
bid the cloud,” in Proc. ACM SIGCOMM, 2015.

