
1

QoS-aware Streaming in Overlay Multicast
Considering the Selfishness in Construction Action

Dan Li∗, Jianping Wu∗, Yong Cui∗, and Jiangchuan Liu†

∗Department of Computer Science, Tsinghua University, Beijing, China
Email: lidan@csnet1.cs.tsinghua.edu.cn, jianping@cernet.edu.cn, cy@csnet1.cs.tsinghua.edu.cn

†School of Computing Science, Simon Fraser University, British Columbia, Canada
Email:jcliu@cs.sfu.ca

Abstract— Most existing overlay multicast proposals have as-
sumed that the nodes are cooperative and thus focus on the
global topology optimization. However, a unique and important
characteristic of overlay nodes is that, as application-layer agents,
they can be selfish with their own interests. To achieve better
Quality-of-Service (QoS) or to minimize forwarding overhead, an
overlay node can behave selfishly in the information collection or
in the overlay construction. While the former has recently been
investigated, the impact of selfishness in the construction action
remains unclear.

In this paper, we present the first systematic study on the
impact of selfishness in both tree and mesh overlay construction.
Our investigation considers multiple QoS measures for streaming
applications, including stream latency, resolution, and continuity.
Our contribution is twofold: First, we analyze how for selfish
overlay nodes to choose a construction-action policy to optimize
their individual multi-metric QoS. Second, we demonstrate that
the selfishness-aware policy for the construction action is consis-
tent with the QoS optimization for the global multicast session,
but not vice versa. The implication is significant: A globally
optimal overlay construction itself can be vulnerable to individual
selfishness; but, following our directions, we can design an overlay
that is both globally optimal and selfish-resistant.

I. INTRODUCTION

Given the multi-receiver nature of video streaming applica-
tions, multicast is a natural vehicle to support such applications
[1]. It is known that network-layer multicast, or IP multicast
[2], is the most efficient, but its reach and scope remain very
limited due to many practical and political reasons. Recently,
application-layer overlay multicast [3∼13] has emerged as
a promising alternative. Overlay multicast realizes routing
and data transmission in the application-layer, which is much
easier to implement and deploy, though less efficient [14][27].
Overlay multicast is also more flexible, because it is decou-
pled from the network-layer routing, and end systems in the
application layer support much richer semantics.

Optimizing the overlay structure is clearly critical to the
performance of these protocols. Existing proposals on overlay
structures can be broadly classified into two categories [27],
namely, tree-based and mesh-based. The former follows a

This work was supported by the National Natural Science Foundation of
China (No. 60403035), the Hi-Tech Research and Development Program of
China (No. 2006AA01Z205), and the National Basic Research Program of
China (No. 2003CB314801). J. Liu’s work was partly supported by a Canadian
NSERC Discovery Grant.

well-ordered parent-child relation for data delivery; the latter,
however, does not maintain such a fixed relation, but let each
node keep a small set of partners to exchange their data
availability information, and accordingly fetch expected data.

In both tree and mesh overlays, the structure establishment
generally consists of two steps, that is, information collection
and construction action. In the first step, overlay nodes learn
the information of other nodes and the virtual overlay links,
such as the outgoing bandwidth, pair-wise delay, link cost,
and etc. In the construction action, based on the available
information, each node selects a long-time parent to receive
stream data in tree-based overlay multicast, or selects a
segment-providing node to fetch a certain segment in mesh-
based overlay multicast.

Most existing overlay multicast proposals have assumed
that the nodes are cooperative and thus focus on the global
topology optimization [15∼16]. However, a unique and im-
portant characteristic of overlay nodes is that, as application-
layer agents, they can be selfish with their own interests.
To achieve better Quality-of-Service (QoS) or to minimize
forwarding overhead, an overlay node can behave selfishly in
the information collection or in the construction action. The
impact of selfishness in the information collection has recently
been examined [14][17∼20], but its impact in the construction
action remains unclear.

In this paper, we present the first systematic study on the
impact of selfishness in both tree and mesh overlay con-
struction. Our investigation considers multiple QoS measures
for streaming applications, including latency, streaming rate,
and continuity. Our contribution is twofold: First, we analyze
how for selfish overlay nodes to choose construction-action
policy to optimize their individual multi-metric QoS. Second,
we demonstrate that the selfishness-aware construction action
will help with optimizing the QoS of the global multicast
session, but not vice versa. The implication is significant: A
globally optimal overlay construction itself can be vulnerable
to individual selfishness; but, following our directions, we can
design an overlay that is both globally optimal and selfish-
resistant.

The rest of this paper is organized as follows. We intro-
duce the related work in Section II. The model and major
notations are presented in Section III. The multiple-metric
QoS-aware streaming under selfish policies in construction

2

action is discussed in Section IV and Section V, for tree-
based overlay multicast and mesh-based overlay multicast,
respectively. Finally, section VI concludes the paper.

II. RELATED WORK

Given the difficulties of deploying IP multicast in the
global Internet, overlay multicast has emerged as a promising
alternative, particularly for living media streaming. Existing
overlay multicast proposals can be broadly classified into two
categories according to the overlay structures [27], namely,
tree-based and mesh-based.

In tree-based protocols, each node selects a parent from
other participating nodes to receive the streaming data. The
parent/children relationships among all nodes compose the
overlay structure, i.e., an application-layer multicast tree. Once
the tree is established, the data is propagated along the tree
branches, and there is no additional control overhead except
for occasional branch repair or optimization. Typical protocols
belonging to this category include NARADA [3], NICE [4],
ZIGZAG [5], Scattercast [6], and Yoid [7], etc.

In mesh-based overlay multicast, there is no explicit par-
ent/children relationship. Each node maintains a number of
partners, and the partner relationships among all nodes com-
pose a mesh structure. The streaming data propagated in
the mesh is divided into segments. Each node notifies its
partners which segments it holds, and requests for segments
from partners that hold the segmens. A key advantage of
mesh-based overlay multicast is that it can tolerate node
dynamics better than tree-based overlay multicast. Mesh-based
overlay multicast can be realized by a multi-tree approach,
such as SplitStream [8], Bullet [9], CoopNet [10], and etc,
or by an unstructured data-driven approach, like PRO [11],
CoolStreaming [12], Chainsaw [13], etc.

The optimization of the overall Quality-of-Sevice (QoS)
experienced by the users has constantly been the primary
design objective for multicast protocols. Many existing pro-
tocols have focused on the global optimization and supposed
that all the overlay nodes are cooperative. Sripanidkulchai et
al. discuss different parent-selecting methods, like randomly
policy, minimum-depth-first policy, and longest-first policy
[15]. Bishop et al. disclose the advantage of preemption in
favor of nodes with higher priorities by experiments [16]. One
common characteristic of these researches is that they do not
consider the selfishness of individual overlay nodes.

A key difference between overlay multicast and IP mul-
ticast, however, is that the overlay nodes are strategic
application-layer agents, which can be selfish with their own
interests. Naturally, a node would like to receive better QoS
as well as to bear less forwarding burden. The impact of
the selfish behavior in the information collection has been
recently studied. Mathy et al. demonstrate the negative impact
of distance cheating among overlay nodes on the stretch and
link stress of the multicast tree [14], and Li et al. further
study the impact of this kind of cheating on the stability
of multicast tree [17]. Habib et al. point out that the QoS
of overlay multicast might be negatively influenced if some
overlay nodes are not cooperative to contribute resources,

which can also be viewed as the information cheating about
outgoing bandwidth or available data [18]. Yuen et al. propose
a VCG-based strategyproof algorithm to defend cheating about
node throughput [19]. Wang et al. study the cheating about
link cost in non-cooperative multicast protocols, and also
design distributed payment algorithms against this kind of
cheating [20]. Later investigations also suggest obtaining the
information of other overlay nodes or virtual links by a
trustworthy infrastructure, like RandPeer [21].

The selfishness of overlay nodes in the construction ac-
tion however has yet to be investigated. To the best of our
knowledge, the only related work is [22], which proposes
an additional payment mechanism. In their work, a node
consumes ”points” to request for a segment from another node,
and earns ”points” by sending a segment to another node. The
policy of the segment-requesting node to bid for segments
and the policy of the segment-providing node to accept bids
are also examined, but limited to the QoS considering the
network latency and packet loss rate. In this paper, we present
a systematic study on the impact of selfishness in construction
for both tree and mesh overlay. We consider multiple QoS
metrics, including stream latency, resolution, and continuity
in our study, and do not impose any additional mechanisms.

III. MODELS AND DEFINITIONS

As in existing protocols, we assume that each node main-
tains only a partial view of other nodes, called neighbors
[23]. When a node joins a multicast session, it obtains the
neighbor list from a central node (e.g., the source node or a
node designated by the source), and this list is dynamically
updated to suite network changes. The neighboring relation-
ships among all nodes compose the overlay control structure.
The average number of neighbors each overlay node maintains
over the total number of participating nodes is referred to as
the neighbor density.

There are two steps toward establishing the data delivery
structure of an overlay, also called overlay structure. In the
information collection step, neighboring nodes exchange nec-
essary control information with each other. In the construction
step, the nodes send requests to form the overlay from scratch
or join an existing overlay. We assume that the nodes are
selfish, which strikes to maximize its individual Quality-of-
Service (QoS) and minimize the data forwarding overhead.
Since tree and mesh represent two distinct approaches for
overlay construction, and both have shown their success in
theory and practical deployment, we will investigate both of
them in this paper.

In live streaming applications, the typical QoS metrics that
users care are stream latency, stream resolution, and stream
continuity, which are the QoS-measure parameters we use in
our model. We also list the major notations used throughout
this paper in Tab. I.

IV. TREE-BASED OVERLAY MULTICAST

We begin our study on the tree-based overlay multicast. In
this approach, each node selects a parent from the neighbors

3

TABLE I
MAJOR NOTATIONS IN THIS PAPER

Notations Definitions
T The playing duration of a segment of the stream
E The stream encoding rate on the source node
A The set of all receiver nodes of the overlay multicast session
n The total number of receiver nodes in the overlay multicast

session
e The neighbor density of the overlay control structure
Q The set of all segments of the stream (for mesh-based overlay

multicast only)
U The overall QoS of the multicast session
ui The QoS of node i
uq

i The segment QoS of node i for segment q (for mesh-based
overlay multicast only)

di The source-to-end latency on node i
dq

i The source-to-end latency of segment q on node i (for mesh-
based overlay multicast only)

fq
i The source-to-end latency of segment q on partners of node

i that hold the segment when node i needs to request it from
a partner (for mesh-based overlay multicast only)

mij The distance from node i to node j
ri The received stream rate on node i
rq
i The received stream rate of segment q on node i (for mesh-

based overlay multicast only)
vi The total incoming bandwidth of node i
oi The total outgoing bandwidth of node i
li The past duration of node i in the multicast session
ti The expected future duration of node i in the multicast session
si The average interval between stream pauses on node i in its

duration in the multicast session
α User’s weights on the stream latency
β User’s weights on the stream resolution
γ User’s weights on the stream continuity

b

d
 e
 f
 g

h

a

c

Fig. 1. An example of tree-based overlay structure.

to receive the streaming data, and the parent/children rela-
tionships among all nodes compose the overlay structure, i.e.,
a multicast tree, as illustrated in Fig. 1. Once the multicast
tree is established, the data is propagated along the tree and
there is no additional control overhead. When a node leaves
or fails, all of its descendants will observe a data outage until
the multicast tree is repaired.

A. Multi-Metric QoS

In tree-based overlay multicast, the stream latency on a node
is evaluated just upon the source-to-end latency of the node,
the stream resolution on a node is evaluated upon the received
streaming rate on the node, and the stream continuity on a
node is evaluated upon the average interval between stream
pauses in the duration of the node in the multicast session.

Let ui denote the QoS of node i, which is to be optimized

by this selfish node. The playing duration of a segment of
the stream and the stream encoding rate on the source node
are both constant, denoted by T and E, respectively. If the
source-to-end latency on node i is di, the received stream rate
on node i is ri, the duration of node i in the multicast session
so far is li, and the average interval between stream pauses on
node i during its duration in the multicast session is si, the
QoS of node i in tree-based overlay multicast is expressed as
Eq. (1).

ui =
αu1 + βu2 + γu3

α + β + γ
(1)

in which, u1 = log2 (1 + T
T+di

), u2 = log2 (1 + ri

E), u3 =
log2 (1 + si

li
).

The parameters α, β, and γ represent the user’s weights
on stream latency, stream resolution, and stream continuity,
respectively. The log(.) function is concave, suggesting that
the QoS increases more slowly with less source-to-end latency,
higher received stream rate, and longer interval between stream
pauses. It is easy to prove that the resultant value of ui is
within [0, 1].

We further explain the implication of Eq. (1) as follows:
1) If node i cares stream latency only, i.e., β = 0 and γ = 0,

the QoS of node i is ui = log2 (1 + T
T+di

). In this case, the
QoS of node i approaches 1 when the source-to-end latency
approaches to 0, and its QoS approaches 0 if the source-to-end
latency is excessive.

2) If node i cares stream resolution only, i.e., α = 0 and
γ = 0, the QoS of node i is ui = log2 (1 + ri

E). Then the
QoS of node i approaches 1 when the received stream rate is
closer to the stream encoding rate on the source node, and its
QoS approaches 0 when the received stream rate is too low.

3) If node i cares stream continuity only, i.e., α = 0 and
β = 0, the QoS of node i becomes γ = 0, the QoS of node i
is ui = log2 (1 + si

li
). Under this situation, the QoS of node

i equals 1 when the average interval between stream pauses
is just the duration of node i in the multicast session (i.e.,
there is no stream pause), and its QoS approaches 0 when
the average interval between stream pauses is too short (i.e.,
frequent pauses).

Let A denote the set of all receiver nodes of the overlay
multicast session, with a total number of n. The overall QoS
of the multicast session, U , is defined as the average QoS of
all receiver nodes, i.e.,

U =
∑

i∈A ui

n
(2)

Since each overlay node is selfish and strategic, it will try
to optimize its own QoS. We discuss the selfish behavior
of overlay nodes during the construction action in tree-based
overlay multicast in the following subsections, including both
parent selection and children acceptance.

B. Parent Selection

In tree-based overlay multicast, there are two representative
parent-selection policies for node i.

4

Random policy. Randomly select a neighbor as the parent,
denoted as x1.

QoS-aware policy. Select the neighbor that can maximize
the QoS of node i as the parent, denoted as x2.

From the perspective of the selfish node i, the QoS-aware
policy is obviously better since this policy optimizes its QoS
given the information of neighbors. From the perspective of
the overall multicast session, the QoS-aware policy is also
better because this policy not only optimizes the QoS of the
parent-selecting node i, but also provides higher QoS for other
nodes that might select node i as the parent in the future.

The key issue becomes how for the parent-selecting node i
to estimate its QoS if selecting some neighbor j as the parent
in the multiple-metric environment. The source-to-end latency,
the received stream rate and the average interval between
stream pauses on node i if selecting neighbor j as the parent
can be estimated as follows.

1) Estimation of the source-to-end latency.
In the information collection, neighbor j tells its source-to-

end latency, dj , to its neighbors including node i, and node i
measures the distance from neighbor j to itself as mji. The
source-to-end latency on node i if selecting neighbor j as the
parent is estimated as di = dj + mji.

2) Estimation of the received stream rate.
Suppose the total incoming bandwidth of node i is vi. In

the information collection, node i learns that the total outgoing
bandwidth of neighbor j is oj , and the received stream rate on
neighbor j is rj . The received stream rate on node i if selecting
neighbor j as the parent is estimated as ri = min(rj , oj , vi).

3) Estimation of the average interval between stream pauses.
In tree-based overlay multicast, the stream pauses expe-

rienced by a node are mainly due to the changes of its
ancestors. There are two reasons that cause the changes: 1)
it is preempted by another node; and 2) an ancestor fails or
leaves the session. If a node is frequently preempted by other
nodes, it is regarded as having a lower child priority (explained
in the next subsection), and will likely be preempted again in
the future. Also, according to the measurement study from
[16], we assume that the nodes that have already stayed a
longer time than others tend to stay longer in the future as
well.

Hence, we assume that the node that has experienced longer
average interval between stream pauses is likely to have longer
average interval between stream pauses in the future. More
explicitly, in information collection, node i learns the average
interval between stream pauses on neighbor j as sj . The
average interval between stream pauses on node i if selecting
neighbor j as the parent is estimated as si = sj .

It is worth noting that the duration of a neighbor is also
implicitly included in its average interval between stream
pauses. For example, if node i selects its parent from two
neighbors, j1 and j2. Neighbor j1 stays in the multicast session
for 10 seconds and observes 1 stream pause, while j2 stays
in the multicast session for 4 seconds and observes no stream
pause. Then neighbor j1 is assumed to provide node i with
longer interval between ancestor changes. This is rational since
we suppose the nodes that have stayed longer in the multicast
session will stay longer in the future.

Given the parent-requesting node i has the collected infor-
mation and estimations of the metrics as described above, and
it also predicts its future duration in the multicast session as
ti, the parent priority of neighbor node j to node i, Pji, is
assigned as Eq. (3).

Pji =
αP1 + βP2 + γP3

α + β + γ
(3)

where P1 = log2 (1 + T
T+dj+mji

), P2 = log2 (1 +
min(rj ,oj ,vi)

E), P3 = log2 (1 + min(sj ,ti)
ti

).
After assigning the parent priorities to neighbors, the parent-

selecting node i will send a parent request with a expected
rate (the minimum of its incoming bandwidth and the stream
encoding rate) to the neighbor with the highest parent priority.
If the parent request is rejected by the best neighbor due to the
competition of other nodes, node i will send a parent request
to the neighbor with the second highest parent priority, and so
on.

We should notice the decision is online. When node i
compares the parent priority of the current parent with that of
another neighbor, it should take the additional pause to switch
to a new parent into consideration.

C. Children Acceptance

An overlay node i can choose to reject all parent requests
from other nodes, thus to bear no forwarding burden. However,
in an environment where all nodes can choose their own
children-acceptance policies, this may not be the best policy
to optimize the QoS of node i in the future, because it may
re-select parent later due to network dynamics. If node i is
willing to accept children within its outgoing bandwidth, and
the outgoing bandwidth is enough, all parent requests can be
accepted. If the outgoing bandwidth is not enough to accept
all parent requests, which is the most common case in overlay
multicast, some parent requests have to be rejected or some
existing children will be preempted.

We discuss here four representative children-acceptance
policies that a selfish node i might adopt.

Negative policy. Not accept any children, denoted as y1.
Random policy. Randomly accept children within its total

outgoing bandwidth, denoted as y2.
Capacity-aware policy. Prioritize neighbors that might pro-

vide higher expected QoS to node i (represented as higher
capacity) if becoming node i’s parent in the future, denoted
as y3.

Contribution-aware policy. Prioritize neighbors that have
ever forwarded more stream data to node i (like tit-for-tat
mechanism in BitTorrent [24∼25]), denoted as y4.

Since a node receives parent requests from neighbors, and
will also select its parent from neighbors, its QoS in the
future is determined by the children-acceptance policies of
its neighbors and its own. The choice of children-acceptance
polices of selfish nodes can be modeled as a multi-player
game. In this game, the players are the overlay nodes, the
strategy space is {y1, y2, y3, y4}, and the payoff to each
node is its expected QoS in the future. Before solving the

5

TABLE II
PAYOFF OF NODE i

y1
−i y2

−i y3
−i y4

−i

y1
i 0 2 2 1

y2
i 0 2 2 2

y3
i 0 2 2 4

y4
i 0 2 2 3

equilibrium of the multi-player game, we give two definitions
in game theory here.

Definition 1: Dominated Strategy
If si is the strategy of player i, s−i is the strategy set

of all players except player i, and the payoff of player i is
wi(si, s−i), s?

i is called the dominant strategy for player i if
it satisfies Eq. (4).

wi(s?
i , s−i) ≥ wi(s′i, s−i),∀s−i,∀s′i 6= s?

i (4)

Definition 2: Dominated Strategy Equilibrium
If s? is the strategy set of all players, it is called a dominant

strategy equilibrium if s?
i is the dominant strategy for each

player i.
Theorem 1. The dominated strategy equilibrium in the game

of choosing children-acceptance policy in tree-based overlay
multicast is that every node adopts policy y3.

Proof. For each node i, its payoff depends on the children-
acceptance policy of its neighbors and its own. For simplicity,
node i can assume that the neighbors adopt the same children-
acceptance policy. If yk

i (k=1, 2, 3, 4) denotes that node i
adopts policy yk, and yk

−i (k=1, 2, 3, 4) denotes that the
neighbors of node i all adopt the policy yk, the payoff of
node i is shown in Tab. II.

The payoff numbers in Tab. II only represent the relative
value, not meaning the absolute QoS of node i in the future.
However, it is enough for us to find the dominant strategy of
node i.

Note that among all parent-requesting neighbors, in the
future node i will most likely send parent requests to those
with higher QoS, since QoS-aware policy is the preferred
parent-selection policy. The parent-requesting neighbors that
might have higher QoS in the future are called better potential
parents for node i. Tab. II is explained as follows.

1) If the neighbors all choose policy y1, the payoff of node
i is obviously 0, indicating that node i cannot find any parent
from these neighbors in the future. This explains the payoff
numbers in the second column of Tab. II.

2) If the neighbors all choose policy y2, the payoff of node
i is 2, no matter which policy node i adopts. Because the child
priority of node i to any neighbor node j (including the better
potential parents) in the future is random and can be viewed
as identical with other neighbors of node j. This explains the
payoff numbers in the third column of Tab. II.

3) If the neighbors all choose policy y3, the payoff of node
i is also 2, no matter which policy node i adopts. This is
because, compared with other neighbors of node j, the relative
capacity of node i to any neighbor node j (including the better
potential parents) in the future is also random. This explains
the payoff numbers in the fourth column of Tab. II.

4) If the neighbors all choose policy y4, the payoff of node
i is different according to its own policy. We will discuss
the four cases (when node i chooses policy y1, y2, y3, y4)
respectively as follows.

i) If node i chooses policy y2, its payoff is 2. Since node
i chooses the random policy, its contribution to any neighbor
node j (including the better potential parents) is also random.
Thus, the child priority of node i to the contribution-aware
neighbor j in the future can be viewed as random. This
explains the payoff number in the third line of the fifth column
of Tab. II.

ii) If node i chooses policy y1, its payoff is 1. Node i still
has the chance to become the child of any neighbor node j
in the future, if node j has available outgoing bandwidth; but
the child priority of node i to node j is the lowest, because it
provides no data to node j. Thus, the payoff of node i is more
than 0 but less than when it adopts policy y2. This explains
the payoff number in the second line of the fifth column of
Tab. II.

iii) If node i chooses policy y4, its payoff is 3. The nodes
that have ever contributed more to node i will be better
potential parents for node i in the future (recall the discussion
about estimating the average interval between stream pauses
when selecting parent in the previous section). The QoS of
node i in the future will be higher than when it adopts policy
y2, because the better potential parents are likely be served
better from a contribution point of view. This explains the
payoff number in the fifth line of the fifth column of Tab. II.

iv)If node i chooses policy y3, its payoff is 4. The payoff
of node i is higher than when adopting policy y4, because the
prioritized neighbors are better potential parents if considering
the contribution. This explains the payoff number in the fourth
line of the fifth column of Tab. II.

Therefore, according to definition 1, y3 is the dominated
strategy of node i. According to definition 2, the domi-
nated strategy equilibrium in the game of choosing children-
acceptance policy is that all nodes choose policy y3.

The next issue is how for node i to assign the child priorities
to the parent-requesting nodes under policy y3. The expected
QoS of node i if selecting some parent-requesting node j as
the parent in the future is estimated by two factors, that is,
the QoS of node i if node j accepts it as a child in the future
and the probability of node j accepting node i as a child in
the future.

For estimating the QoS of node i if neighbor node j accepts
it as a child in the future, node i does not have the information
of source-to-end latency of node j, the received stream rate
of node j, nor the average interval between stream pauses on
node j when node j becomes node i’s parent in the future. The
information available for node i to estimate are the distance
from node j to node i, the total incoming bandwidth and
outgoing bandwidth of node j, and the past duration of node
j in the multicast session.

On estimating the probability of node j accepting node i
as a child in the future, the nodes that have higher outgoing
bandwidth and longer duration in the multicast session are
prioritized.

Therefore, the child priority of node j to node i, Cji, is

6

assigned as Eq. (5).

Cji =
αC1 + βC2 + γC3

α + β + γ
∗H (5)

where C1 = log2 (1+ T
T+mji

), C2 = log2 (1+ min(E,vj ,oj ,vi)
E),

C3 = log2 (1 + min(lj ,ti)
ti

), and H = oj ∗ lj .
Eq. (5) indicates that the overlay nodes with higher outgoing

bandwidth, higher incoming bandwidth and longer staying
time, and those closer to other nodes in the multicast session
will be assigned higher child priorities in construction action.
We claim that the prioritization of these nodes with higher
capacities will also help optimize the overall QoS of the mul-
ticast session, which will be demonstrated by the simulations
in the following subsection.

D. Simulation

We conduct simulations to study the relationship between
the selfish construction-action policy of overlay nodes and the
overall QoS of the tree-based overlay multicast session. The
simulation is set as follows.

We use the random model to generate the network-layer
topology by GT-ITM [26]. There are 2000 routers in the
network-layer topology and the link distances between con-
nected routers are within [10ms, 500ms]. The playing duration
of a segment of the stream is 5s, and the stream encoding rate
on the source node is 1000kbps. To evaluate the overall QoS
of the multicast session under different network situations,
we test various system configurations. For each configuration,
the receiver node with lower sequence number joins earlier
in the multicast session and leaves later from the multicast
session, which is an important assumption in this paper. The
single source node and the receiver nodes are attached to
different routers randomly selected among the 2000 routers.
The outgoing bandwidth of each node is within [0kbps,
8000kbps], and the incoming bandwidth of each node is within
[500kbps, 2000kbps].

To simplify the simulation, all nodes are assumed to adopt
the same policy. We compare the overall QoS of the multicast
session under different parent-selection policies and children-
acceptance policies, that is, x1 +y2, x2 +y2, x1 +y3, x2 +y3,
x1 + y4, and x2 + y4. The children-acceptance policy y1 is
not considered since the overlay multicast session cannot be
supported if all nodes adopt this policy. We first fix the total
number of receiver nodes, n, as 200, and change the neighbor
density of the overlay control structure, e, as 10%, 30%, 50%,
70%, and 90%.Then we fix the neighbor density as 20%, and
change the total number of receiver nodes as 100, 300, 500,
and 700. When evaluating the QoS of the multicast session,
user’s weights on stream latency, resolution and continuity are
all equally set as 1/3.

Figs. 2 and 3 plot the corresponding overall QoS of the
multicast session for the two settings above. From both the fig-
ures, we can draw the following conclusion. 1) Given the same
children-acceptance policy, the overall QoS under QoS-aware
parent-selection policy is always better than that under random
parent-selection policy. 2) Given the same parent-selection pol-
icy, the overall QoS under capacity-aware children-acceptance

10 30 50 70 90
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neighbor density of overlay control structure (%)

O
ve

ra
ll

Q
oS

 o
f o

ve
rla

y
m

ul
tic

as
t s

es
si

on

w1 w2 w3 w4 w5 w6

Fig. 2. The overall QoS of the tree-based overlay multicast session (n=200).
w1 = x1+y2, w2 = x2+y2, w3 = x1+y3, w4 = x2+y3, w5 = x1+y4,
and w6 = x2 + y4.

100 300 500 700
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total number of receiver nodes

O
ve

ra
ll

Q
oS

 o
f o

ve
rla

y
m

ul
tic

as
t s

es
si

on

w1 w2 w3 w4 w5 w6

Fig. 3. The overall QoS of the tree-based overlay multicast session (e=20%).
w1 = x1+y2, w2 = x2+y2, w3 = x1+y3, w4 = x2+y3, w5 = x1+y4,
and w6 = x2 + y4.

policy is the best among the three children-acceptance policies.
3) The overall QoS is optimized when all nodes adopt the QoS-
aware parent-selection policy and the capacity-aware children-
acceptance policy, which is also the preferred choice of selfish
individual nodes.

V. MESH-BASED OVERLAY MULTICAST

We next discuss the case of mesh-based overlay con-
struction. Unlike the tree-based case, there is no fixed par-
ent/children relationship between overlay nodes in a mesh-
based overlay. Instead, each node selects a number of partners
from its neighbors in the overlay control structure. The part-
ners are also dynamically adjusted to suite network dynamics.
The partner relationships among all nodes compose a mesh
structure. In a typical mesh-based overlay, the original stream
propagated in the mesh is divided into multiple segments;
partners exchange the segment availability information with
each other, and each node fetches a certain segment from
a partner that holds the segment. Therefore, it is the data
availability that drives the propagation of the stream.

Compared with tree-based overlay multicast, the segment
notification and segment requests introduce additional con-
trol overhead. Yet mesh-based overlay multicast can tolerate

7

f

e

g

h

b
 d

c

a

Fig. 4. An example of mesh overlay structure.

node dynamics better. Since a node can receive segments
from different partners, the departure or malfunction of an
individual node will significantly impact its partners. A node
observes stream pause only when a segment is not available
on all of its partners before the playback time of the segment.
Fig.4 illustrates the overlay structure of mesh-based overlay
multicast, with node a being the source.

There are also two steps to establish the overlay structure in
mesh-based overlay multicast. In the information collection,
each node learns the information of partners, such as the
segment availability, the outgoing bandwidth, and the distances
from partners to it. In the construction action, each node sends
a segment request to the partner selected as the segment-
providing node for a certain segment, and responds segment
requests within its outgoing bandwidth.

A. Multiple-Metric QoS

In mesh-based overlay multicast, the stream latency on a
node is evaluated upon the average source-to-end latency of
all segments of the stream, and the stream resolution on a
node is evaluated upon the average received streaming rate of
all segments. As in tree-based overlay, the stream continuity on
a node is evaluated upon the average interval between stream
pauses in the duration of the node in the multicast session, but
the stream pause in mesh-based overlay multicast is caused by
the segment scarcity in partners, not ancestor change, for there
are no predefined ancestors.

Let the playing duration of a segment of the stream, the
stream encoding rate on the source node, and the segment
set of the stream be denoted by T , E, and Q, respectively.
The source-to-end latency of segment q on node i is dq

i , the
received stream rate of segment q on node i is rq

i , the duration
of node i in the multicast session so far is li, and the average
interval between stream pauses on node i during its duration
is si. Then the segment QoS of node i for segment q, uq

i , is
expressed as Eq. (6).

uq
i =

αuq
1 + βuq

2

α + β
(6)

where uq
1 = log2 (1 + T

T+dq
i
), uq

2 = log2 (1 + rq
i

E).
And the QoS of node i, ui, is expressed as Eq. (7).

ui =
αu1 + βu2 + γu3

α + β + γ
(7)

whereu1 =

∑
q∈Q

log2 (1+ T

d
q
i
+T

)

|Q| , u2 =
∑

q∈Q
log2 (1+

r
q
i

E)

|Q| ,
u3 = log2 (1 + si

li
).

The overall QoS of the multicast session, U , is also defined
as the average QoS of all receiver nodes, as in Eq. (2). We dis-
cuss the selfishness of overlay nodes in the construction action
of mesh-based overlay multicast in the following subsections,
which includes the segment request and the segment response
policies.

B. Segment Request

Each node exchanges segment availability information with
partners, and finds which partners hold certain segments. If
a segment is held by multiple partners, a segment-providing
node is selected among these partners for the segment. There
are also two representative policies for node i to select the
segment-providing node for segment q.

Random policy. Randomly select a partner that holds seg-
ment q as the segment-providing node, denoted as x1′ .

QoS-aware policy. Select the partner that can maximize
the segment QoS of node i for segment q as the segment-
providing node, denoted as x2′ .

As in tree-based overlay multicast, QoS-aware policy is the
optimal choice of selfish overlay nodes and will help optimize
the overall QoS of the multicast session. The key issue here is
how for the segment-requesting node i to estimate its segment
QoS for segment q if selecting some partner j as the segment-
providing node for the segment.

In mesh-based overlay multicast, the requesting segment q
is stored in the segment-providing node. Therefore, when node
i decides to request segment q, the source-to-end latencies of
segment q on the partners that hold it are identical, denoted as
fq

i . In the information collection, node i also needs to measure
the distance from partner j to it, mij , and learn the outgoing
bandwidths of partner j, oj . The segment-request priority of
node j to node i for segment q, Rq

ji, is assigned as Eq. (8).

Rq
ji =

αRq
1 + βR2

α + β
(8)

where Rq
1 = log2 (1 + T

T+mji+fq
i
), R2 = log2 (1 +

min(E,oj ,vi)
E).

The segment-requesting node i will send a segment request
with a requiring rate (the minimum of its incoming bandwidth
and the stream encoding rate) to the partner that has the high-
est segment-request priority for the segment. If the segment
request is rejected by the best partner due to competition from
other nodes, node i will send a segment request to the partner
with the second highest segment-request priority, and so on.

C. Segment Response

When a node receives multiple segment requests from
partners, it should have a segment-response policy to accept
the segment requests within its total outgoing bandwidth.
Similar to those in tree-based overlay multicast, there are four
representative segment-response policies for selfish node i.

Negative policy. Not respond any segment request, denoted
as y1′ .

8

Random policy. Randomly respond segment requests within
its total outgoing bandwidth, denoted as y2′ .

Capacity-aware policy. Prioritize partners that might pro-
vide higher expected segment QoS to node i (represented as
higher capacity) if becoming node i’s segment-providing nodes
in the future, denoted as y3′ .

Contribution-aware policy. Prioritize partners that have ever
forwarded more segments to node i, denoted as y4′ .

We can still use a multi-player game to study the choice of
the segment-response policy. In this game, the players are the
overlay nodes, the strategy space is {y1′ , y2′ , y3′ , y4′}, and
the payoff of each node is its expected segment QoS in the
future.

Theorem 2. The dominated strategy equilibrium in the game
of choosing segment-response policy in mesh-based overlay
multicast is that each node adopts the policy y3′ .

The proof is similar to that in theorem 1.
We next discuss how for node i to assign the segment-

response priority to a segment-requesting node j when adopt-
ing the capacity-aware segment-response policy. To predict
the future segment QoS of node i if choosing node j as the
segment-providing node, node i needs to learn the distance
from node j to it and the total outgoing bandwidth of node
j. In addition, node i estimates the probability of its segment
request being accepted by node j in the future. The nodes
that have higher outgoing bandwidths and stay longer in the
multicast session are assumed to accept the segment request
of node i with higher probability in the future. Therefore, the
segment-response priority of node j to node i, Gji, is assigned
as Eq. (9).

Gji =
αG1 + βG2

α + β
∗H (9)

where G1 = log2 (1 + T
T+mji

), G2 = log2 (1 + min(E,oj ,vi)
E),

H = oj ∗ lj .
Eq. (9) indicates that the overlay nodes with higher outgoing

bandwidth and longer staying time, and those closer to other
overlay nodes will have higher priorities in the construction
action in mesh-based overlay multicast. In fact, the prioritiza-
tion for these nodes will also help optimize the overall QoS
of the multicast session, which will be demonstrated by the
simulations in the following subsection.

D. Simulation

We conduct simulations to study the relationship between
the selfish construction-action policy of overlay nodes and the
overall QoS of the mesh-based overlay multicast session. The
simulation set of the overlay control structure is similar to
the simulation in tree-based overlay multicast presented in the
previous section. The stream on the source node is divided into
600 segments. The number of partners each node maintains is
set as 4, which is a recommended value in [12].

All selfish nodes are assumed to adopt the same policy, and
we also compare the overall QoS of the multicast session un-
der different segment-request policies and segment- response
policies, that is, x1′ + y2′ , x2′ + y2′ , x1′ + y3′ , x2′ + y3′ ,
x1′ + y4′ , and x2′ + y4′ . The segment-response policy y1′ is
not considered. To evaluate the overall QoS under different

10 30 50 70 90
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Neighbor density of overlay control structure (%)

O
ve

ra
ll

Q
oS

 o
f o

ve
rla

y
m

ul
tic

as
t s

es
si

on

w1 w2 w3 w4 w5 w6

Fig. 5. The overall QoS of the mesh-based overlay multicast session (n=200).
w1 = x1′ + y2′ , w2 = x2′ + y2′ , w3 = x1′ + y3′ , w4 = x2′ + y3′ ,
w5 = x1′ + y4′ , and w6 = x2′ + y4′ .

100 300 500 700
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total number of receiver nodes

O
ve

ra
ll

Q
oS

 o
f o

ve
rla

y
m

ul
tic

as
t s

es
si

on

w1 w2 w3 w4 w5 w6

Fig. 6. The overall QoS of the mesh-based overlay multicast session
(e=20%). w1 = x1′+y2′ , w2 = x2′+y2′ , w3 = x1′+y3′ , w4 = x2′+y3′ ,
w5 = x1′ + y4′ , and w6 = x2′ + y4′ .

network situations, we first fix the total number of receiver
nodes, n, to 200, and change the neighbor density of the
overlay control structure, e, as 10%, 30%, 50%, 70%, and
90%; We then fix the neighbor density to 20%, and change
the total number of receiver nodes as 100, 300, 500, and
700. When evaluating the QoS of the multicast session, user’s
weights on stream latency, resolution and continuity are all
equally set as 1/3.

Figs. 5 and 6 illustrate the corresponding overall QoS
of the multicast session for the settings above. From these
two figures, we can get the following results. 1) Given the
same segment-response policy, the overall QoS under QoS-
aware segment-request policy is always better than under
random segment-request policy. 2) Given the same segment-
request policy, the overall QoS under capacity-aware segment-
response policy is the best among the three segment-response
policies. 3) The overall QoS is optimized when all nodes adopt
the QoS-aware segment-request policy and the capacity-aware
segment-response policy, which is also the preferred choice of
selfish individual nodes.

9

VI. CONCLUSION

A unique and important characteristic of overlay multicast
is that the overlay nodes can be selfish with their own interests.
The selfishness can easily defeat the previous efforts on
overlay construction that focus on the global optimization
with cooperative nodes only. In this paper, we presented a
systematical study on the impact of selfishness in both tree and
mesh overlay construction. Our investigation considered multi-
ple QoS measures for streaming applications, including stream
latency, stream resolution, and stream continuity. We analyzed
how for selfish overlay nodes to choose the construction-
action policy to optimize their own multiple-metric QoS, and
demonstrated by analytical and simulation results that the
selfish construction-action policy of overlay nodes will help
optimize the overall QoS of the multicast session.

REFERENCES

[1] J. Liu, B. Li, and Y. Q. Zhang, Adaptive Video Multicast over the Internet.
IEEE Multimedia, 10(1):22-31, 2003

[2] S. E. Deering, Multicast Routing in Internetworks and Extended LANs.
In Proceedings of ACM SIGCOMM’88, Stanford, CA, USA, Aug 1988

[3] Y. H. Chu, S. G. Rao, and H. Zhang, A Case for End System Multicast.
In Proceedings of ACM SIGMETRICS’00, Santa Clara, CA, USA, Jun
2000

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable Application
Layer Multicast. In Proceedings of ACM SIGCOMM’02, Pittsburgh, PA,
USA, Aug 2002

[5] D. A. Tran, K. A. Hua, and T. Do, Zigzag: An efficient peer-to-peer
scheme for media streaming. In Proceedings of IEEE INFOCOM’03, San
Franciso, CA, USA, Mar/Apr 2003

[6] Y. Chawathe, Scattercast: An Architecture for Internet Broadcast Distribu-
tion as an Infrastructure Service. Ph.D. Thesis, University of California,
Berkekey, Dec, 2000

[7] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, ALMI: An Appli-
cation Level Multicast Infrastructure. In Proceedings of USITS’01, San
Francisco, California, USA, Mar 2001

[8] P. Francis, Yoid: Extending the Internet Multicast Architecture. White
Paper, http://www.icir.org/yoid

[9] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh. In Proceedings
of ACM SOSP’03, Bolton Landing, NY, Oct 2003

[10] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,
Distributing Streaming Media Content Using Cooperative Networking. In
Proceedings of NOSSDAV’02, Miami Beach, FL, USA, May 2002

[11] R. Rejaie and S. Stafford, A framework for architecting peer-to-peer
receiver-driven overlays. In Proceedings of NOSSDAV’04, Cork, Ireland,
Jun 2004

[12] X. Zhang, J. Liu, B. Li, and T. P. Yum, CoolStreaming/DONet: A data-
driven overlay network for efficient live media streaming. In Proceedings
of IEEE INFOCOM’05, Miami, FL, Mar 2005

[13] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr,
Chainsaw: Eliminating Trees from Overlay Multicast. In Proceedings of
IPTPS’05, Ithaca, NY, USA, Feb 2005

[14] L. Mathy and N. Blundell, Impact of Simple Cheating in Application-
Level Multicast. In Proceedings of IEEE INFOCOM’04, Hong Kong,
China, Mar 2004

[15] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, The Feasi-
bility of Supporting Large-Scale Live stream Applications with Dynamic
Application End-Points. In Proceedings of ACM SIGCOMM’04, Portland,
Oregon, USA, Aug/Sep 2004

[16] M. Bishop, S. Rao, and K. Sripanidkulchai, Considering Priority in
Overlay Multicast Protocols under Heterogeneous Environments. In Pro-
ceedings of IEEE INFOCOM’06, Barcelona, Spain, Apr 2006

[17] D. Li, Y. Cui, K. Xu, and J. Wu, Impact of Receiver Cheating on
the Stability of ALM Tree. In Proceedings of IEEE GLOBECOM’05, St.
Louis, Missouri, USA, Nov/Dec 2005

[18] A. Habib and J. Chuang, Incentive Mechanism for Peer-to-Peer Media
Streaming. In Proceedings of IWQOS’04, Montreal, Canada, Jun 2004

[19] S. Yuen and B. Li, Strategyproof Mechanisms for Dynamic Multicast
Tree Formation in Overlay Networks. In Proceedings of IEEE INFO-
COM’05, Miami, Florida, USA, Mar 2005

[20] W. Wang, X. Li, Z. Suny, and Y. Wang, Design Multicast Protocols
for Non-Cooperative Networks. In Proceedings of IEEE INFOCOM’05,
Miami, Florida, USA, Mar 2005

[21] J. Liang and K. Nahrstedt, RandPeer: Membership Management for
QoS Sensitive Peer-to-Peer Applications. In Proceedings of IEEE INFO-
COM’06, Barcelona, Spain, Apr 2006

[22] G. Tan, and S. A. Jarvis, A Payment-based Incentive and Service
Differentiation Mechanism for Peer-to-Peer Streaming Broadcast. In
Proceedings of IWQOS’06, Yale University, New Haven, CT, USA, Jun
2006

[23] T. Moscibroda, S. Schmid, R. Wattenhofer, On the Topologies Formed
by Selfish Peers. In Proceedings of IPTPS’06, Santa Barbara, USA, Feb
2006

[24] D. Qiu and R. Srikant, Modeling and Performance Analysis of
BitTorrent-Like Peer-to-Peer Networks. In Proceedings of ACM SIG-
COMM’04, Portland, OR, USA, Aug 2004

[25] A. R. Bharambe and C. Herley, Analyzing and Improving BitTorrent Per-
formance. Microsoft Research Report, No. MSR-TR-2005-03, Microsoft
Research, 2005

[26] E. Zegura, K. Calvert, and S. Bhattacharjee, How to Model an Internet-
work. In Proceedings of IEEE INFOCOM’96, San Francisco, CA, USA,
Mar 1996

[27] J. Liu, S. G. Rao, B. Li, and H. Zhang, Opportunities and Challenges
of Peer-to-Peer Internet Video Broadcast. Technical Report, 2006.

