Joint Scheduling of MapReduce Jobs with Servers: Performance Bounds and Experiments

Yi Yuan*, Dan Wang†, Jiangchuan Liu‡
*Department of Computing, The Hong Kong Polytechnic University
†The Hong Kong Polytechnic University Shenzhen Research Institute
‡School of Computing Science, Simon Fraser University
Email: {cseyuan, csdwang}@comp.polyu.edu.hk, jcliu@cs.sfu.ca

Abstract—MapReduce has achieved tremendous success for large-scale data processing in data centers. A key feature distinguishing MapReduce from previous parallel models is that it interleaves parallel and sequential computation. Past schemes, and especially their theoretical bounds, on general parallel models are therefore, unlikely to be applied to MapReduce directly. There are many recent studies on MapReduce job and task scheduling. These studies assume that the servers are assigned in advance. In current data centers, multiple MapReduce jobs of different importance levels run together. In this paper, we investigate a schedule problem for MapReduce taking server assignment into consideration as well. We formulate a MapReduce server-job organizer problem (MSJO) and show that it is NP-complete. We develop a 3-approximation algorithm and a fast heuristic. We evaluate our algorithms through both simulations and experiments on Amazon EC2 with an implementation in Hadoop. The results confirm the advantage of our algorithms.

I. INTRODUCTION

Recently the amount of data of various applications has increased beyond the processing capability of single machines. To cope with such data, scale out parallel processing is widely accepted. MapReduce [1], the de facto standard framework in parallel processing for big data applications, has become widely adopted. Nevertheless, MapReduce framework is also criticized for its inefficiency in performance and as “a major step backward” [2]. This is partially because that, performance-wise, the MapReduce framework has not been deeply studied enough as compared to decades of study and fine-tune of other conventional systems. As a consequence, there are many recent studies in improving MapReduce performance.

MapReduce breaks down a job into map tasks and reduce tasks. These tasks are parallelized across server clusters, yet reduce tasks must wait until map tasks finish because reduce tasks rely on intermediate data produced by the map tasks. This is a parallel-sequential structure. In current practice, multiple MapReduce jobs are scheduled simultaneously to efficiently utilize the computation resources in the data center servers. It is a non-trivial task to find a good schedule for multiple MapReduce jobs and tasks running on different servers. There are a great number of studies on general parallel processing scheduling in the past decades. Nevertheless, whether these techniques can be applied directly in the MapReduce framework is not clear; and especially, their results on theoretical bounds are unlikely to be translated.

†The server clusters here are meant to be general; it can either be data center servers or cloud virtual machines.

Fig. 1: Impact of server assignment. (a) Without server assignment, Hadoop default strategy. (b) Joint considering of server assignment.

In this paper, we conduct research in this direction. There are recent studies on MapReduce scheduling [3][4]. As an example, an algorithm is developed in [4] for joint scheduling of processing and shuffle phases and it achieves an 8-approximation. All past studies assume that the servers are assigned. That is, they assume that tasks in MapReduce jobs are first assigned to the servers, and their scheduling is conducted to manage the sequences of the map and reduce tasks in each job. It is not clear the impact that if the server assignment is “less good”, whether this will affect the scheduling on map and reduce tasks. We illustrate this impact by a toy example in Fig.1. There are three machines and two jobs. Job 1 has 4 map tasks and 2 reduce task. Job 2 has 1 map task and 1 reduce task. Assume the processing time to be 75 seconds for all map tasks and 100 seconds for all reduce tasks. If server assignment is not considered, we will result in Fig.1(a), which follows the default FIFO strategy of Hadoop [5]. However, if we joint consider server assignment, we can achieve a schedule shown in Fig.1(b). It is easy to see that the completion time of job 2 in Fig.1(a) is 250 seconds and in Fig.1(b) is 175 seconds, a 30% improvement.

In this paper, we fill in this blank by jointly consider server assignments and MapReduce jobs (and the associated tasks). To systematically study this problem, we formulate a unique MapReduce server-job organizer problem (MSJO). Note that the MSJO we discuss is the general case where the jobs can have different weights. We show that MSJO is NP-complete and we develop a 3-approximation algorithm. This approximation algorithm, though polynomial, has certain complexity in solving an LP-subroutine. Therefore, we further develop a fast heuristic. We evaluate our algorithm through extensive simulations. Our algorithm can outperforms the state-of-the-art algorithms by 40% in terms of total weighted job completion time. We further implement our algorithm in Hadoop and evaluate our algorithm using experiments in Amazon EC2[6]. The experiment results confirm the advantage of our algorithm.
The remaining part of the paper is organized as follows. We discuss related work in Section II. We formulate the MJSO problem and analyze its complexity in Section III. In Section IV, we present a set of algorithms. We evaluate our algorithms in Section V. In Section VI, we show an implementation of our scheme in Hadoop and our evaluation in Amazon EC2. Finally, Section VII concludes the paper.

II. RELATED WORK

Due to the widely usage of MapReduce systems, there is a flourish of studies on understanding MapReduce performance and many developed various improvement schemes. From system point of view, there are many valuable advances on improving data-shuffling [7], in-network aggregation [8], etc. From algorithmic point of view, people are looking into MapReduce job/task scheduling with various considerations in different scenarios. Quincy [9] and delay scheduling [10] are advanced. [13] investigate map task scheduling under heavy traffic and they assume that tasks are assigned to processors/servers in advance. As shown in Fig.1, scheduling of jobs without considering server assignment may result in less optimal solutions. We fill in this gap in this paper.

General scheduling of parallel machines has decades of study. There are many works with inspiring ideas and analytical techniques [15][16]. For minimizing total weighted job completion time with precedence constraints, the best known work is a 4-approximation algorithm in [17]. However, these works focus on the general case.

III. MapReduce Server-Job Organizer: The Problem and Complexity Analysis

A. Problem Formulation

Let \(J \) be a set of MapReduce jobs. Let \(M \) be a set of identical machines. Let the release time of job \(j \) be \(r_j \). This release time is the time a job entering the system; note that it differs from the job start time where the job scheduler can schedule a job to be started later than this release time. Let \(\mathcal{T}_M(j) \) and \(\mathcal{T}_R(j) \) be the set of map tasks and reduce tasks for each job \(j \). Let \(\mathcal{T} \) be the set of all tasks of \(J \). For each task \(u \in \mathcal{T} \), let \(p_u \) be its processing time. We assume that a task cannot be preempted. We also assume that for any job \(j \), processing times of its map tasks are smaller than that of its reduce tasks. We admit that this is a key assumption for our bounding development. Yet this is true in current situation. Every map task simply scatters a chunk of data while the reduce tasks need to gather, reorganize and process data produced by map tasks. To make the situation worse, the number of reduce task is always configured to be much less than the number of map tasks. As a result, processing times of reduce tasks are much longer than that of map tasks. We also validate this assumption in our experiment.

Let \(d_{uv} \) be the delay between a map task \(u \in \mathcal{T}_M(j) \) and a reduce task \(v \in \mathcal{T}_R(j) \) (e.g., introduced by shuffle phrase). Let \(S_u \) be the start time of task \(u \). Let \(\mathcal{S} \) be set of \(S_u, \forall u \in \mathcal{T} \). Let \(C_j \) be completion time of job \(j \), which is the time when all reduce tasks \(v \in \mathcal{T}_R(j) \) finish. Let \(\mathcal{C} \) be set of \(C_j, \forall j \in J \). There is a weight \(w_j \) associated with job \(j \) and our objective is to find a feasible schedule to minimize total weighted job completion time \(\sum_{j \in J} w_j C_j \) subject to following constraints for every job \(j \).

\[
\begin{align*}
 S_u &\geq r_j & \forall u \in \mathcal{T}_M(j) \\
 S_v &\geq S_u + d_{uv} + p_u & \forall v \in \mathcal{T}_R(j) \\
 C_j &\geq S_u + p_v & \forall v \in \mathcal{T}_R(j)
\end{align*}
\]

<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J)</td>
<td>Set of all jobs</td>
</tr>
<tr>
<td>(T)</td>
<td>Set of all tasks in (J)</td>
</tr>
<tr>
<td>(T_M)</td>
<td>Task number in (T)</td>
</tr>
<tr>
<td>(M)</td>
<td>Machine number in (M)</td>
</tr>
<tr>
<td>(C)</td>
<td>Set of completion time of jobs</td>
</tr>
<tr>
<td>(S)</td>
<td>Set of start times of tasks</td>
</tr>
<tr>
<td>(p_u)</td>
<td>Processing time of task (u)</td>
</tr>
<tr>
<td>(d_{uv})</td>
<td>Delay between task (u) and task (v)</td>
</tr>
</tbody>
</table>

B. Problem Complexity

Theorem 1: MJSO is NP-complete.

Proof: It is easy to verify that calculating total weighted job completion time of a schedule result is NP. Therefore, MJSO is in NP class. To shown MJSO is NP-complete, we reduce a job schedule problem (problem SS13 in [18]) to it. Problem SS13 is proven NP-complete. The proven theorem can be stated as follow: Given a set \(J \) of jobs and a set \(M \) of identical machines, every job \(j \) has a weight \(w_j \). Every job \(j \) can be processed uninterruptedly on every machine with processing time \(p_j \). Let \(C_j \) be job completion time of job \(j \) in a feasible schedule. It is NP-complete to determine a feasible schedule where \(\sum_{j \in J} w_j C_j \) is minimized.

Given every instance \((J, M)\) of problem SS13, we can construct an instance \((\mathcal{J}, \mathcal{M})\) of MJSO. \(\mathcal{M} \) and \(\mathcal{M} \) are same. For every job \(j \in J \), there is a job \(j^M \in \mathcal{M} \). If \(j \in J \), \(j^M \) has same weight, \(w_j \). Every job \(j^M \in \mathcal{M} \) has one map task with processing time 0 and one reduce task with processing time of job \(j \). Release time of \(j^M \) is 0. Thus, if MJSO can be solved optimally with a polynomial algorithm, problem SS13 can be solved by this algorithm. Because problem SS13 is NP-complete, MJSO is NP-complete.

IV. Algorithm Development and Theoretical Analysis

We outline our approach described in next three subsections: (1) We introduce a linear programming relaxation to give a lower bound of the optimal solution for MJSO. This LP-based solution may not be a feasible solution. (2) Although there is a polynomial time algorithm for solving this LP relaxed problem in theory, the high complexity associated makes it
impractical to solve the LP-relaxed problem when problem size is large. Therefore, inspired by this classic linear programming relaxation, we develop a novel constraint generation algorithm to produce another related solution which provides lower bound to MSJO. (3) We develop algorithm MarS to generate a feasible solution from this relaxed solution. We prove that this solution is within 3 factor of the optimal solution for MSJO.

A. Classical Linear Programming Relaxation

Since MSJO is NP-complete, we adopt a linear programming relaxation of the problem to give a lower bound on the optimal solution value. Constraints of this LP relaxation are necessary conditions that task start times in a feasible schedule result have to satisfy. The relaxation constraints are shown as follow:

\[\sum_{u \in B} p_u S_u \geq \frac{1}{2|M|} \left(\sum_{u \in B} p_u \right)^2 - \frac{1}{2} \sum_{u \in B} p_u^2 \quad \forall \mathbb{B} \in T \quad (4) \]

Where |M| is number of machines in M, B is any subset of T.

Then our linear programming relaxation problem is minimizing \(\sum_{j \in \mathbb{J}} w_j C_j \) subjected to constraints in Equation.1-4. We call this problem Classical LP Relaxation Problem (CLS-LPP). Note that the decision variables in this CLS-LPP are \(S_u \) and \(C_j \); so a solution can be presented as \((S, C)\).

Constraints in Equation.4 describe a polyhedron where task start times of a feasible schedule lie in. We give a simple example to explain the intuition. Consider 3 machines with 6 tasks, \(t_1, t_2, \ldots, t_6 \) whose processing times are \(p_1, p_2, \ldots, p_6 \) respectively. Consider an assignment result where \(t_1 \) and \(t_2 \) are assigned to machine 1, \(t_3 \) and \(t_4 \) to machine 2, \(t_5 \) and \(t_6 \) to machine 3. Start times of \(t_1 \) and \(t_2 \) can be \(S_1 = 0 \) and \(S_2 = p_1 \). Or \(S_1 = p_2 \) and \(S_2 = 0 \) if \(t_2 \) is scheduled first. Then, we have \(p_1 S_1 + p_2 S_2 = p_1 p_2 = \frac{1}{2}((p_1 + p_2)^2 - (p_1^2 + p_2^2)) \). Tasks on other machines have similar equations. Adding these equations together, we have \(\sum_{i=1}^{6} p_i S_i = \frac{1}{2}((p_1 + p_2)^2 + (p_3 + p_4)^2 + \cdots + (p_5 + p_6)^2) \). Given a solution of CLS-LPP, if we schedule tasks in non-descending order of their middle finish time, Property 1 gives a basic relation between the total processing time of previous scheduled tasks and the middle finish time of the unscheduled tasks. When additional constraints are added, the sum of task start times will increase. As a result, the left part of Equation.4 increases and the relation still holds.

B. Conditional LP Relaxation and Constraint Generation Algorithm

Note that there are an exponential number of constraints in Equation.4 due to the exponential number of \(\mathbb{B} \). In theory, CLS-LPP can be solved in polynomial time using ellipsoid method with a separation oracle [16]. However, the complexity associated with ellipsoid method makes it impractical to solve large problems with thousands of decision variables. We derive a new LP-relaxation problem which has a small subset of constraints in Equation.4. The optimal result of this new LP-relaxation problem also leads to the 3-approximation algorithm to be developed in section IV-C. Because this new problem is built by iteratively adding constraints based on checking certain property of its solution, we call it Conditional LP-relaxation problem (CND-LPP).

Before developing our algorithm for building CND-LPP, we introduce a property of the solutions that satisfy Equation.4. Given start time \(S_u \) of task \(u \), let \(M_u = S_u + \frac{1}{2} p_u \) be middle finish time of task \(u \). The property is described as follows:

Property 1: Given \(S \) satisfying Equation.4, we sort tasks in non-descending order of their middle finish times. We use a permutation \(\pi \) to represent the sorting result, where \(M_{\pi(1)} \leq M_{\pi(2)} \leq \cdots \leq M_{\pi(|T|)} \). We have following inequality for all \(i \in \{2, \ldots, |T|\} \):

\[\frac{1}{|M|} \sum_{k=1}^{i-1} p_{\pi(k)} \leq 2 M_{\pi(i)} \quad (5) \]

Proof: For a given permutation \(\pi \) and task \(\pi(i) \), we create a task set \(\mathbb{B} = \{\pi(1), \pi(2), \ldots, \pi(i-1)\} \). We rewrite Equation.4 as:

\[\sum_{k=1}^{i-1} p_{\pi(k)} \left(M_{\pi(k)} - \frac{p_{\pi(k)}}{2} \right) \geq \frac{1}{2|M|} \left(\sum_{k=1}^{i-1} p_{\pi(k)} \right)^2 - \frac{1}{2} \sum_{k=1}^{i-1} p_{\pi(k)}^2 \quad (6) \]

Then we have

\[\sum_{k=1}^{i-1} p_{\pi(k)} M_{\pi(k)} \geq \frac{1}{2|M|} \left(\sum_{k=1}^{i-1} p_{\pi(k)} \right)^2 \]

Because \(M_{\pi(1)} \leq M_{\pi(2)} \leq \cdots \leq M_{\pi(i)} \), we have:

\[M_{\pi(i)} \sum_{k=1}^{i-1} p_{\pi(k)} \geq \sum_{k=1}^{i-1} p_{\pi(k)} M_{\pi(k)} \geq \frac{1}{2|M|} \left(\sum_{k=1}^{i-1} p_{\pi(k)} \right)^2 \]

Finally, we have Equation.5 by eliminating \(\sum_{k=1}^{i-1} p_{\pi(k)} \).

Given a solution of CLS-LPP, if we schedule tasks in non-descending order of their middle finish time, Property 1 gives us a basic relation between the total processing time of previous scheduled tasks and the middle finish time of the unscheduled tasks. We will use this property to prove the theoretical bound of our algorithm MarS. Note that this property holds for any solution satisfying constraints in Equation.4. If we can build a CND-LPP whose optimal solution also has this property, MarS has the same theoretical bound based on this CND-LPP.
Recall that the intuition behind Equation.4 is to describe a polyhedron where the task start times of a feasible schedule lie in. We denote this polyhedron as P^L. Given a specific CLS-LPP, its constraints define a polyhedron, denoted as P^{CLS}. All precedence constraints in Equation.1-3 define another polyhedron, denoted as P^{PC}. We know that $P^{CLS} = P^L \cap P^{PC}$ (see Fig.2). Objective function of the problem defines a hyperplane. Solving CLS-LPP is searching for a point in P^{CLS} which has the smallest distance to this hyperplane. Instead of finding the optimal point in P^{CLS} (point A in Fig.2), we search a solution in P^{PC} (point B in Fig.2) which has Property.1. We start with an initial CND-LPP which only contains all precedence constraints in Equation.1-3. By iteratively adding fine chosen constraints in Equation.4, we approach the desirable solution.

To check whether an optimal solution satisfies Property.1, we can check whether constraints in Equation.4 are satisfied by approach the desirable solution. We denote this polyhedron as P. We formally define these constraints as follows:

Definition. Performance Guarantee Constraint for given π and index i, denoted as $PGC(\pi, i)$, is defined as follows:

$$
\sum_{k=1}^{i-1} p_{\pi(k)} S_{\pi(k)} \geq R(\pi, i)
$$

where $R(\pi, i) = \frac{1}{\sum_{k=1}^{i} p_{\pi(k)}} \left(\sum_{k=1}^{i-1} p_{\pi(k)} \right)^2 - \frac{1}{2} \sum_{k=1}^{i} p_{\pi(k)}^2$.

We call them performance guarantee constraints because if an optimal LP satisfies $PGC(\pi, i)$ for $\forall i \in [2 \ldots |T|]$, MarS can produce a feasible solution with guaranteed performance.

We first describe the main process of our constraint generation algorithm (COGE) (see Algorithm.1). First we build an initial CND-LPP. In this initial CND-LPP, all precedence constraints in Equation.1-3 are included. Its objective function is same to MSJO. Then, there are 3 main steps. In step 1, we solve CND-LPP and get an optimal solution (S^{LP}, C^{LP}) for current CND-LPP. In step 2, we use S^{LP} to produce π and build PGCs based on π. In step 3, we check whether S^{LP} satisfies $PGC(\pi, i)$ for $\forall i \in [1 \ldots |T|]$. If S^{LP} satisfies all PGCs, we are done. Otherwise, we add the violated PGCs to CND-LPP and repeat step 1 to 3 until we produce an optimal solution satisfies all PGCs.

Because finding an optimal solution satisfying all PGCs may still involve large computation complexity in large problems, given a threshold ε we can terminate computation if current solution (S^{LP}, C^{LP}) is within $(1 - \varepsilon)$ of optimal solution satisfying all PGCs. Unfortunately, optimal solution is hard to compute. Instead, we construct a feasible solution (S^{NV}, C^{NV}) which satisfies all PGCs (NV means no-violation). When $PGC(\pi, i)$ is not satisfied, we calculate an offset which indicates how much $S_{\pi(i)}$ should increase to satisfy $PGC(\pi, i)$. Function $ViolationOffset(PGC(\pi, i), S^{LP})$ calculate this offset as follows:

$$
offset = \frac{1}{p_{\pi(i)-1}} \left(R(\pi, i) - \sum_{k=1}^{i-1} p_{\pi(k)} S^{LP}_{\pi(k)} \right)
$$

Thus, we can build a feasible solution by adding this offset to $S^{NV}_{\pi(k)}$ for $k \in [i-1 \ldots |T|]$. Finally, after all PGCs are checked, we check whether (S^{LP}, C^{LP}) reaches the stop threshold.

In practice, COGE can produce satisfactory result in less than 10 iterations.

Algorithm 1. COGE()

Input:	1) Job set J; 2) Machine set M; 3) Stop threshold ε		
Output:	A solution (S^{LP}, C^{LP}).		
1:	Build initial CND-LPP with Equation.1-3;		
repeat			
2:	Solve CND-LPP with a linear programming solver;		
3:	Let (S^{LP}, C^{LP}) be optimal solution of current CND-LPP;		
4:	Let violated PGC number vn be 0;		
5:	$(S^{NV}, C^{NV}) \leftarrow (S^{LP}, C^{LP})$;		
6:	$\pi \leftarrow$ Sort tasks by middle finish time according to S^{LP};		
7:	for all $i \in [1 \ldots	T]$ do
8:	if $PGC(\pi, i)$ is satisfied by S^{LP} then		
9:	continue;		
10:	Add $PGC(\pi, i)$ to CND-LPP;		
11:	$vn = vn + 1$;		
12:	$offset = \text{ViolationOffset}(PGC(\pi, i), S^{LP})$;		
13:	for all $k \in [i-1 \ldots	T]$ do
14:	$(S^{NV})_{\pi(k)} = (S^{NV})_{\pi(k)} + offset$;		
15:	Update C^{NV} according to S^{NV};		
16:	if $\sum_{j \in J} w_j C^{NV}_{\pi(j)} \geq (1 - \varepsilon) \sum_{j \in J} w_j C^{NV}_{\pi(j)}$ then		
17:	return (S^{LP}, C^{LP});		
until	vn is 0		
20:	return (S^{LP}, C^{LP});		

Algorithm 2. Mars()

Input:	1) Job set J; 2) Machine set M; 3) LP optimal result S^{LP}		
Output:	Scheduling result S^H.		
1:	$S^H \leftarrow \emptyset$;		
2:	$\pi \leftarrow$ Sort tasks by middle finish time according to S^{LP};		
3:	Let e_m be earliest idle time of machines m;		
4:	$e_m \leftarrow 0, \forall m \in M$;		
5:	for all $i \in [1 \ldots	T]$ do
6:	Find job j where $\pi(i) \in T^M_j$ or $\pi(i) \in T^H_j$;		
7:	if $\pi(i) \in T^M_j$ then		
8:	$S^\text{arristed} = r_j$;		
9:	if $\pi(i) \in T^H_j$ then		
10:	$S^\text{arristed} = \max_{u \in C^M_j} (S^H_u + p_u + d_u(i))$;		
11:	Find m^* where $e_{m^*} = \min_{m \in M} (e_m)$.		
12:	$S^H_u = \max \{S^\text{arristed}, e_{m^*}\}$;		
13:	$e_{m^*} = S^H_i + p_i(i)$;		
14:	$S^H \leftarrow S^H \cup S^H_i$;		
15:	return S^H;		

C. Mars Algorithm

In this section, we describe Mars. Mars is an heuristic algorithm which derives feasible schedule result from the optimal solution of the linear relaxation problem. Let (S^{LP}, C^{LP}) denote the optimal result of our LP relaxation problem. Let M^{LP}_{u} denote the middle finish time of task u in the LP optimal result. We have $M^{LP}_{u} = S^{LP}_{u} + p_u/2, \forall u \in T$. Let S^{H} be set of task start times in final schedule result.

Our algorithm Mars is shown in Algorithm.2. We first produce π based on S^{LP}. Then we schedule tasks from $\pi(1)$
to \(\pi(\{T\}) \), meaning we schedule tasks in non-descending order of their middle finish time. In each iteration \(i \), we first check the earliest possible start time \(S_{earliest}^i \) of task \(\pi(i) \) to make sure that precedence constraints are satisfied. Then we choose a machine \(m^* \) which has the earliest idle time among all machines. We schedule \(\pi(i) \) to machine \(m^* \) with start time \(\min\{S_{earliest}^i, e_{m^*}\} \) and update \(e_{m^*} \) as finish time of \(\pi(i) \).

Because MarS schedules tasks in non-descending order of their middle finish times, Property 1 gives us a basic relation between the total processing time of previous scheduled tasks and middle finish time of unscheduled tasks. When release time constraints and precedence constraints exist, there may be idle time intervals between tasks. Thus, we introduce Lemma 2 to give an upper bound to the total length of these intervals.

Lemma 2: Given schedule result after tasks \(\pi(k) \), \(k \in \{1 \ldots (i - 1)\} \), are scheduled by MarS, if we choose any machine \(m \) and start \(\pi(i) \) as soon as possible after machine \(m \) is idle, it result a start time \(S_{\pi(i)}^i \) for \(\pi(i) \). Let \(g(m, \pi(i)) \) be total length of idle time on machine \(m \) before \(S_{\pi(i)}^i \). We have:

\[
g(m, \pi(i)) \leq M_{\pi(i)}^{LP}
\]

Proof: We outline our idea first. In our schedule result, there is an idle time interval before a task because this task cannot start earlier due to certain precedence constraints. These constraints are tight in our schedule result but may not be tight in LP optimal result. For example, there is an idle time interval between task \(u_2 \) and \(v_3 \) in Fig.3 because \(S_{u_2}^H = S_{u_1}^H + d_{u_1u_2} + p_{u_2} \). Otherwise, task \(u_2 \) can start earlier. However, we only know \(S_{u_2}^L \geq S_{u_2}^L + d_{u_1u_2} + p_{u_2} \). Our idea is to prove \(S_{u_2}^L - (S_{v_3}^H + p_{v_3}) \leq M_{u_2}^L - M_{v_3}^L \) by analyzing these tight precedence constraints in our schedule result. The left part of this inequality is maximum length of idle time interval between \(v_3 \) and \(u_2 \). We iteratively develop similar inequalities for idle time intervals before task \(v_3 \). Sum up both side of these inequalities, we have Equation.7.

Next, we start our formal proof. For a scheduling problem, we can build a precedence graph \(G = (V, L) \) to describe all precedence constraints with delay. \(V \) is the set of tasks. For two task \(u \) and \(v \), directed link \((u, v) \in L \) with length \(d_{uv} \) indicates that execution of \(v \) at least waits for a time interval \(d_{uv} \) after \(u \) finishes. For our problem, we introduce a dummy initial task \(t^I \) to represent the start point of the schedule. Then, constraints \(S_u \geq r_j, \forall u \in T_j^{(M)} \) in Equation.1 can be expressed in the form of precedence constraint with delay: \(S_u \geq S_{v_1}^H + d_{u_1v_1} + p_{v_1}, \forall u \in T_j^{(M)} \) where \(S_{v_1} = 0, d_{u_1v_1} = r_j, p_{v_1} = 0 \). In remaining part of this proof, we only mention precedence constraint with delay.

Given a schedule result, delay between \(u \) and \(v \) may be longer than \(d_{uv} \). We say a link \((u, v) \in L \) is tight in this schedule result if \(S_{uv}^L = S_{uv}^H + d_{uv} + p_u \). In a schedule result, there may be a tight-link path \(\{u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_s\} \) where link \((u_k, u_{k+1}) \in L \) is tight for all \(k \in \{1 \ldots s - 1\}, s \geq 2 \). Fig.3 demonstrates a three-node tight-link path in a schedule result. If \(u_s = u \), we call \(\{u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_s\} \) a tight-link path of task \(u \). Among all tight-link paths of task \(u \), there is a tight-link path which has the maximal number of nodes. We call it the longest tight-link path of task \(u \), denoted as \(LTLP(u) \). In our problem, for a map task \(u \in T_j^{(M)} \), \(LTLP(u) \) can be empty or

Algorithm:

1. **Initialization:**
 - Initialize \(\pi(\{T\}) \) and set initial task as a reference point.
 - Define precedence constraints and delays for each task.

2. **Schedule Process:**
 - For each task \(\pi(i) \):
 - Determine the earliest possible start time \(S_{earliest} \) on each machine.
 - Choose a machine \(m^* \) with the earliest idle time.
 - Schedule \(\pi(i) \) on \(m^* \) at time \(S_{earliest} + e_{m^*} \).

3. **Check Precedence Constraints:**
 - Ensure all precedence constraints are satisfied.

4. **Calculate Idle Times:**
 - For each task \(u \), calculate the idle time interval before \(u \).

5. **Optimize Flow:**
 - Adjust schedules to minimize idle time and maximize efficiency.

6. **Finalize Schedule:**
 - Check for feasibility and make necessary adjustments.

Figure 3: Demo of tight-link path \(v_1 \rightarrow v_2 \rightarrow v_3 \) and \(u_1 \rightarrow u_2 \) in a schedule result for proof of Lemma 2.

Lemma 2: Let \(LTLP(u) = \{t^I \rightarrow u\} \). For a reduce task \(v \in T_j^{(R)} \), \(LTLP(v) \) can be \(LTLP_2 = \{t^I \rightarrow u \rightarrow v\} \) or \(LTLP_3 = \{u \rightarrow v\} \) where \(u \in T_j^{(M)} \).

For a tight-link \((u, v)\), the following inequality holds for the optimal result of LP relaxation problem because precedence constraints are satisfied:

\[
S_{u}^{LP} \geq S_{u}^{LP} + d_{uv} + p_u
\]

Then we have:

\[
M_{u}^{LP} \geq M_{u}^{LP} + d_{uv} + p_u + \frac{1}{2}(p_v - p_u)
\]

For a tight-link \((u, v)\), the following inequality holds for the optimal result of LP relaxation problem because precedence constraints are satisfied:

\[
S_{u}^{LP} \geq S_{u}^{LP} + d_{uv} + p_u
\]

Then we have:

\[
M_{u}^{LP} \geq M_{u}^{LP} + \sum_{k=1}^{s-1}(d_{u_ku_{k+1}} + p_{u_k}) + \frac{1}{2}(p_v - p_u)
\]

For \(LTLP_1, LTLP_2 \) and \(LTLP_3 \), we always have \(p_u \geq p_u \) because in a specific job, processing times of its reduce tasks are longer than that of its map tasks. Then we have:

\[
M_{u}^{LP} \geq M_{u}^{LP} + \sum_{k=1}^{s-1}(d_{u_ku_{k+1}} + p_{u_k})
\]

Because we can apply this inequality in a tight link path, we also have:

\[
S_{u_3} - S_{u_1} = \sum_{k=1}^{s-1}(d_{u_ku_{k+1}} + p_{u_k})
\]

Based on Equation.8 and Equation.9, we analyze lengths of idle time intervals on machine \(m \). After scheduling \(\pi(i) \) to machine \(h \), there are idle time intervals before \(S_{\pi(i)}^H \). Considering a task \(u \) right after a idle time interval, we find \(LTLP(u) = \{u_1 \rightarrow u_2 \rightarrow \cdots \rightarrow u_s\} \). Because \(u_1 \) is the first task in \(LTLP(u) \), there must be a task \(\hat{v} \) scheduled on machine \(m \) where \(S^\hat{v} \geq S_{u_1} \geq (S^\hat{v} + p^\hat{v}) \) (see task \(v_3 \) in Fig.3). We then have:

\[
S_{u_s} - (S^\hat{v} + p^\hat{v}) \leq M_{u_s}^{LP} - M_{u_1}^{LP}
\]

The left side of this inequality is the maximum length of idle time interval between \(u \) and \(\hat{v} \). We repeat developing this inequality for idle time interval before \(\hat{v} \). Finally, we end up with \(t^I \) whose middle finish time is 0. By adding all these inequalities together, we have Equation.7.

Lemma 2 gives an upper bound for total idle time intervals in the scheduling of task \(\pi(i) \). Note that, this result only holds
when tasks from $\pi(1)$ to $\pi(i - 1)$ are scheduled according to MarS. Next, we introduce Theorem 3.

Theorem 3: MarS is a 3-approximation algorithm for MSJO.

Proof: Consider $\pi(i)$ is scheduled to machine m. Let $\bigcup_{i\in[m]}\pi(i)$ be set of tasks scheduled to machine m before $\pi(i)$. Combine Equation.5 and Equation.7, we have:

$$\frac{1}{|M|} \sum_{k=1}^{i-1} p(k) + g(m, \pi(i)) \leq 3M_{\pi(i)}^LP$$

In our algorithm, we choose machine to start task $\pi(i)$ as early as possible, so we have:

$$S_{\pi(i)}^H \leq \sum_{u\in\bigcup_{i\in[m]}\pi(i)} p_u + g(m, \pi(i)), \forall m \in M$$

There must exist a machine \hat{m} where $\sum_{u\in\bigcup_{i\in[m]}\pi(i)} p_u \leq \frac{1}{|M|} \sum_{k=1}^{i-1} p(k)$. Then, $S_{\pi(i)}^H \leq 3M_{\pi(i)}^LP$ and we have:

$$S_{\pi(i)}^H + p_{\pi(i)} \leq 3M_{\pi(i)}^LP + \frac{3}{2}g_{\pi(i)} = 3\left(S_{\pi(i)}^H + p_{\pi(i)}\right)$$

Equation 10 holds for all task $\pi(i), i \in [1, \ldots, |I|]$, then $C_j^H \leq 3C_j^LP, \forall j \in J$. Finally, we have:

$$\sum_{j\in J} w_j C_j^H \leq 3 \sum_{j\in J} w_j C_j^LP$$

Because $\sum_{j\in J} w_j C_j^LP$ is a lower bound of the optimal, MarS is a 3-approximation algorithm for MSJO.

V. SIMULATION

A. Simulation Setup

1) Background: We use synthetic workloads to study the performance of our algorithm, following similar simulation setup in [3]-[4]. We generate jobs as follows: (1) Job release times are randomly generated following Bernoulli with probability $\frac{1}{2}$. (2) Number of tasks in a job are generated (a) uniformly or (b) randomly. For a job with uniformly generated tasks, the number of map tasks is set to 30 and the number of reduce tasks is set to 10. For a job with randomly generated tasks, the number of map tasks follows Poisson distribution with a mean of 30 and the number of reduce tasks is uniformly chosen between 1 and the number of map tasks. (3) Task processing times are generated (a) uniformly or (b) randomly. For the tasks with uniform processing time, processing times of map tasks are 10 and processing times of reduce tasks are 15. For the tasks with random processing time, processing times of map tasks are normally distributed with a mean of 10 and a standard deviation of 5. Processing times of reduce tasks are normally distributed with a mean 15 and a standard deviation 5. (4) Weights of jobs are generated randomly in normal distribution with a mean 30 and standard deviation 10. (5) Delays between map tasks and reduce tasks are proportional to the processing time of map tasks. This indicates that a long map task will generate more data and these data will need longer time to be transmitted to the reduce tasks. The default number of machines is set to 50.

2) Evaluation metric: The key to compare different algorithms is total weighted job completion time (TWJCT) of the result of the algorithms. To make comparison under different configurations more illustrative, we would like to compare TWJCT of different algorithms with the optimal solution. However, computing the optimal solutions require exponential time. Therefore, we use the LP lower bound as a substitute. We define TWJCT ratio as our evaluation metrics:

$$\text{TWJCT ratio} = \frac{\text{TWJCT of Algorithm X}}{\text{LP lower bound}}$$

TWJCT ratio indicates how close the schedule result to the theoretical lower bound. The smaller TWJCT ratio is, the better the schedule result is. All results in our simulation are measured by TWJCT ratio.

3) Comparisons strategies: We compare performance of our algorithms with the following scheduling strategies:

H-MARES: H-MARES [4] is a LP-based heuristic algorithm considering precedence constraints in MapReduce jobs. In evaluation of [4], H-MARES outperforms other algorithms with a factor of 1.5 to the lower bound. In H-MARES, it is assumed that tasks are assigned to machines in advance. We use H-MARES to evaluate effect of release time and precedence constraints. To offer a fair comparison, we adopt a workload-based assignment strategy where tasks are evenly allocated in order to balance total processing time of tasks on every processor. According to [16], when there is not release time and precedence constraints, LP relaxation constraints in Equation 4 and constraints in [4] have same lower bound if workloads on every processor are same. Moreover, workload-based assignment strategy is also widely adopted in practice.

High Unit Weight First (HUWF): Unit weight (UW) of a job is calculated by dividing weight of the job by total processing time of tasks in the job. All Tasks are sorted in descending order of unit weights of the jobs they belong to. We also maintain a available task list where all tasks in the list do not have any unscheduled precedent task. In each iteration, we choose the task with highest unit weight and assign it to a machine where it can start as early as possible. Then we check whether there is any unscheduled task whose precedent tasks are all scheduled and put these tasks into available task list. We iterate until all tasks are scheduled.

High Job Weight First (HJWF): This algorithm works similar to HUWF. The difference is that tasks are sorted according to weight of the jobs they belong to.

In MarS, we need to choose a stop threshold ϵ for COGE. We run MarS with 100 jobs and change value of stop thresholds (see Fig.4 and Fig.5). We see that when ϵ changes from 0.1 to 0.5, there is a small performance degradation for MarS.
while iteration number decreases rapidly. Thus, we choose $\epsilon = 0.3$. H-MARES also need an stop threshold in solving its LP-relaxation problem. To offer a fair comparison, we choose $\epsilon = 0.3$ for H-MARES instead of 0.5 in the original paper [4].

In our simulation, we assume that the task processing time and delays between a map task and a reduce task are known to the scheduler. There are many studies on accurate processing time prediction [19][20] and trace study [21] shows that the majority of map tasks and reduce tasks are highly recurrent making prediction feasible. We plan a future work here.

B. Simulation Result

We first discuss the most randomized scenario where all parameters are generated in randomly. Based on this scenario, we evaluate impacts of different job parameters.

Performances in the most randomized scenario. Fig. 6 shows results where all job parameters are in random category. We see MarS constantly offers efficient solutions when job number changes. In theory, we proved that MarS represents a 3-approximation of the theoretical lower bound, meaning that TWJCT ratios of MarS are at most 3. In practice, MarS represents an increase less than 0.4 in terms of TWJCT ratio, compared with theoretical lower bound. More specifically, starting at 1.32, MarS increases to 1.39 when job number is 20 and stays at about 1.38 with a variance less than 0.02 when job number further grows. This is because LP relaxation always produces an optimized task schedule order. H-MARES shows stable performance after job number reaches 20. However, we see a constant performance difference between H-MARES and MarS. We consider it as improvement by joint scheduling.

We see that MarS outperforms other algorithms by over 40% in most cases. The only exception happens when job number is 10 where MarS is 1.32 while H-MARES is 1.58, HUWF is 1.77 and HJWF is 1.86. After job number rises to 20, H-MARES increases to 1.96, HUWF and HJWF jump to 2.17 and 2.25 respectively. This is because when there is less jobs, machines are not extensive loaded. Thus, different schedule algorithms can gain close performances. However, when job number increases and machines are fully utilized, algorithm results differ from each other. We also notice that H-MARES outperforms HUWF and HJWF in all cases. This is because workload-based allocation performs well and H-MARES benefits from optimized task order generated by LP relaxation conditions.

Impact of task number in job. Next, we examine the effect of task number in a job. We generate jobs with uniform task number category while other job parameters are in random category. The results are shown in Fig.7. Compared with results in Fig. 6, we see that all algorithms gain better performance. MarS stays at about 1.15 which is 0.17 lower in terms of TWJCT ratio. H-MARES gradually increase from 1.48 to 1.88. HUWF and HJWF still have larger performance variance but TWJCT ratio of both algorithms decreases by 0.2 on average. It is also shown that there is only a tiny performance difference between HUWF and HJWF.

Impact of task processing time. We generate jobs with uniform task processing time category while other job parameters are in random category. MarS is very close to the theoretical lower bound. Its maximum distance to the lower bound is 0.08 when job number is 10. When job number rises, this distance decreases to less than 0.02. The gap between MarS and H-MARES is reduced to 0.35 on average.
It is worth noticing that comparing results in Fig.7 and Fig.8, all algorithms gain better performance in uniform task processing time category. This result indicates that it is more effective to have uniform task processing time than to have same task number in all jobs. It also shows the importance of solving skewed task processing time problem in a parallel computing framework.

Impact of machine number. We change machine number to 100 and examine all algorithms in most randomized scenario (see Fig.9). We see that MarS performs extremely well. Starting at 1.09 when job number is 10, its TWJCT ratio gradually decline to 1.01 which can be considered as optimal. Other algorithms also gain better performance than same scenario when machine number is 50 (see Fig.6). Different from MarS, TWJCT ratios of other algorithms increase with job number. When job number reaches 100, MarS outperform H-MARES, HUWF and HJWF by 0.42, 0.75 and 0.79 respectively.

Impact of prediction error. In order to investigate impact of prediction error, we inject errors to processing times of tasks. All algorithms schedule jobs with error-injected information while we calculate a LP-lower bound based on no-error information. The result is shown in Fig.10. x-axis is maximum prediction error to no-error precessing time. We see that all algorithms do not show great performance degradation. TWJCT ratios of four algorithms increase slightly. The maximum performance degradation is found in H-MARES but it is less than 0.35 in term of TWJCT ratio when maximum prediction error is 100%.

VI. IMPLEMENTATION AND RESULTS OF EXPERIMENT

A. Implementation

We implement a MSJO framework in Hadoop-1.2.0 and run the implementation on Amazon EC2. The implementation framework is described in Fig.12. To run in Hadoop, MSJO needs to cooperate with two components of Hadoop: JobTracker and TaskTracker. JobTracker manages all jobs in a Hadoop cluster and, as jobs are split into tasks, TaskTracker is used to manage tasks on every machine.

We register MSJO to JobTracker so that JobTracker can call MSJO to make schedule decisions. MSJO makes schedule decisions according to different algorithm module. Currently, we implemented four algorithm modules for MarS, H-MARES, HUWF and HJWF in our experiments. Other algorithm modules can be added, and we open source our implementation at [22]. When a job is submitted to Hadoop, JobTracker notifies MSJO that a job is added. MSJO puts the job into a queue. MSJO scheduler is event driven from JobTracker. When Hadoop is running, JobTracker keeps notifying MSJO on TaskTracker status. If a machine is idle, MSJO assigns a task to the TaskTracker of this machine. After a task is finished, the TaskTracker will tell JobTracker, which will further notify MSJO and MSJO updates job information. Accordingly, if all tasks in a job finish, MSJO removes the job and JobTracker sends a job-completion event to user application.

Here we also have a Processing Time Predictor module. This module can be based on a prediction algorithm or history recording of the completion time of past jobs. We leave such a prediction module to our future work. In this experiment, we run jobs one by one with default scheduler of Hadoop and collect data to train our predictor.

In current implementation, all algorithms are offline algorithms. They need full information about the job set before scheduling. To fulfill this requirement, we develop a job set generator. In each experiment, job set generator submits a set of jobs to Hadoop at the beginning of the experiment. These jobs carry release time and weight information with them. After MSJO collects all information for the job set, MSJO call an algorithm module to make a schedule. After that, MSJO schedules jobs accordingly.

B. Experiment Setup

We evaluate the algorithms with experiments on a 16-node cluster. This cluster is built on Amazon EC2. We choose virtual machines of type m1.small which have a 1-ECU cpu (1 ECU roughly equals to 1.0 GHz), 1.7 GB memory and 160GB disk. According to our measurement, the inter-node network bandwidth is 400Mbps.

We employ Wordcount as the MapReduce program in our experiments. Wordcount aims to count the frequency of words appearing in a data set. It is a benchmark MapReduce job and serves as a basic component of many Internet applications (e.g. document clustering, searching, etc). In addition, many MapReduce jobs have aggregation statistics closer to Wordcount [8]. We use a document package from Wikipedia as input data of jobs. This package contains all English documents in Wikipedia since 30th January 2010 with uncompressed size of 43.7 GB. In this package, there are 27 individual files, of which the sizes range from 149 MB to 9.98 GB. For every file, we create a MapReduce job to process it. The number of map tasks is determined by input data size. One map task is created for 64 MB input data. We set the number of reduce tasks to half of the number of map tasks. The release time and job weights are generated in the same way as in the simulation.

We build two job sets: (1) Job set 1. It contains 10 jobs where input data size of every job is less than 1GB. We use this job set to evaluate the performance of our algorithms when jobs are small. (2) Job set 2. This job set contains all 27 jobs.

C. Experiment Result

Performance of different algorithms. The result is shown in Fig.11. In job set 1, we see that MarS outperforms the
In this paper, we studied MapReduce job scheduling with consideration of server assignment. We showed that without such joint consideration, there can be great performance loss. We formulated a MapReduce server-job organizer problem. This problem is NP-complete and we developed a 3-approximation algorithm MarS. We evaluated our algorithm through extensive simulation. The results show that MarS can outperform state-of-the-art strategies by as much as 40% in terms of total weighted job completion time. We also implement a prototype of MarS in Hadoop and test it with experiment on Amazon EC2. The experiment results confirm the advantage of our algorithm.

VII. CONCLUSION

In this paper, we studied MapReduce job scheduling with consideration of server assignment. We showed that without such joint consideration, there can be great performance loss. We formulated a MapReduce server-job organizer problem. This problem is NP-complete and we developed a 3-approximation algorithm MarS. We evaluated our algorithm through extensive simulation. The results show that MarS can outperform state-of-the-art strategies by as much as 40% in terms of total weighted job completion time. We also implement a prototype of MarS in Hadoop and test it with experiment on Amazon EC2. The experiment results confirm the advantage of our algorithm.

ACKNOWLEDGEMENT

Dan Wang’s work is supported by National Natural Science Foundation of China (No. 61272464), RGC/GRF PolyU 5264/13E, HK PolyU 1-ZVC2, G-UB72. Jiangchuan Liu’s work is supported by a Canada NSERC Discovery Grant, an NSERC Strategic Project Grant, and a China NSFC Major Program of International Cooperation Grant (61120106008).

REFERENCES