BROADCAST SCHEDULING ALGORITHMS FOR WIRELESS DATA
DISSEMINATION*

JIANLIANG XU! AND JIANGCHUAN LIU#

Abstract. This chapter introduces broadcast scheduling algorithms for wireless data dissemina-
tion. We classify them into push-based, on-demand, and hybrid scheduling and provide a survey on
the state-of-the-art solutions. Moreover, we describe a newly developed algorithm, called Slack In-
verse Number of pending requests (SIN), for time-critical on-demand scheduling, where user requests
are associated with time constraints. We show the experimental results that prove the superiority of
the SIN algorithm over the existing algorithms. In addition, we briefly review some other issues of
wireless data dissemination, including fault-tolerant broadcast, updates handling, air indexing, and
client cache management.

Key words. Wireless data dissemination, scheduling, broadcast, on-demand, push, content
delivery.

AMS subject classifications. ?

1. Introduction. Owing to the widespread deployment of wireless networks and
fast-improving capabilities of mobile devices, we have been seeing increasing interest
on wireless data services from both industrial and academic communities in recent
years. There are two fundamental information delivery approaches for wireless data
services: point-to-point access and broadcast [16, 40]. In point-to-point access, a logical
channel is established between the client and the server. Queries are submitted to
the server and results are returned to the client in much the same way as in a wired
network. In broadcast, on the other hand, data are accessible simultaneously by all
clients residing in the broadcast area. The server determines the data to broadcast
based on explicit client requests or historical statistics.

Point-to-point access is particularly suitable for light-loaded systems when con-
tention for wireless channels and server processing is not severe. However, as the
number of users increases, the system performance deteriorates rapidly. Compared
with point-to-point access, broadcast is a very attractive alternative for several rea-
sons [1, 21]. First, it allows simultaneous access by an arbitrary number of mobile
clients and thus allows efficient usage of the scarce wireless bandwidth. Second, mo-
bile wireless environments are characterized by asymmetric communication, i.e., the
downlink communication capacity is much greater than the uplink communication
capacity. Data broadcast can take advantage of the large downlink capacity when
delivering data to clients. Third, a wireless communication system essentially em-
ploys a broadcast mechanism to deliver information. Thus, data broadcast can be
implemented without introducing any system overhead.

Wireless data broadcast services have been available as commercial products for
many years (e.g., StarBand [47] and Hughes Network [48]). In particular, recent
announcement of the smart personal objects technology (SPOT) by Microsoft [46],
has further ascertained the industrial interest on and feasibility of utilizing broadcast
for wireless data services. With a continuous broadcast network (called DirectBand

*The writing of this chapter was supported by grants from Hong Kong Baptist University (Grant
FRG/02-03/11-34) and Hong Kong Research Grants Council (Grant CUHK C001/2050312).

fDepartment of Computer Science, Hong Kong Baptist University, Kowloon Tong, KLN, Hong
Kong

iDepartment of Computer Science and Engineering, The Chinese University of Hong Kong,
Shatin, NT, Hong Kong

2 J. Xu and J. Liu

Network) using FM radio subcarrier frequencies, SPOT-based devices (e.g., PDAs
and watches) can continuously receive timely information such as stock quotes, airline
schedules, local news, weather, and traffic information. This chapter shall focus itself
on wireless data dissemination with broadcast.

A key issue in data broadcast systems is the scheduling algorithm, which deter-
mines what is to be broadcast by the server and when. There are three kinds of
broadcast models, namely push-based broadcast, on-demand (or pull-based) broad-
cast, and hybrid broadcast. In push-based broadcast [1, 15, 19], the server dissem-
inates information using a periodic/aperiodic broadcast program (generally without
any intervention of clients); in on-demand broadcast [5, 6], the server disseminates
information based on the outstanding requests submitted by clients; in hybrid broad-
cast [4, 20, 23], push-based broadcast and on-demand data deliveries are combined
to complement each other. Consequently, there are three kinds of data scheduling al-
gorithms, (i.e., push-based scheduling, on-demand scheduling, and hybrid scheduling),
corresponding to the three data broadcast models.

The rest of this chapter is organized as follows. Section 2 discusses various push-
based, on-demand, and hybrid scheduling algorithms. In Section 3, a new scheduling
algorithm for time-critical on-demand broadcast is introduced. Section 4 discusses
some other issues of wireless data dissemination, such as fault-tolerant broadcast,
updates handling, and air indexing. Finally, this chapter is summarized in Section 5.

2. Data Scheduling Algorithms.

2.1. Push-based Data Scheduling. In push-based data broadcast, the server
broadcasts data proactively to all clients according to the broadcast program gener-
ated by the data scheduling algorithm. The broadcast program essentially determines
the order and frequencies that the data items are broadcast in. The scheduling al-
gorithm may make use of precompiled access profiles in determining the broadcast
program. In the following, four typical methods for push-based data scheduling are
described, namely flat broadcast, probabilistic-based broadcast, broadcast disks, and
optimal scheduling.

2.1.1. Flat Broadcast. The simplest scheme for data scheduling is flat broad-
cast. With a flat broadcast program, all data items are broadcast in a round-robin
manner. The average access time for every data item is the same, i.e., half of the
broadcast cycle. This scheme is simple, but its performance is poor in terms of aver-
age access time when data access probabilities are skewed.

2.1.2. Probabilistic-based Broadcast. To improve performance for skewed
data access, the probabilistic-based broadcast [36] selects an item ¢ for inclusion in
the broadcast program with probability f;, where f; is determined by the access
probabilities of the items. The best setting for f; is given by the following formula [36]:

(2.1) fi= Vi

N b
Zj:l \/E

where g; is the access probability for item j, and IV is the number of items in the
database.

A drawback of the probabilistic-based broadcast approach is that it may have an
arbitrarily large access time for a data item. Furthermore, this scheme shows inferior
performance to other algorithms for skewed broadcast [36].

Broadcast Scheduling Algorithms for Wireless Data Dissemination 3

Data Set Hot [@lb|c|d|e|f |g| cop
oos v @ B[] (dlelflg s
D1 D2 D3

ks B [B] (€] [d] [¢] [f [g]

11 c 21 2, 31 32 c 33 34

N}

ABroadcastCyCIe‘a‘b‘d‘a‘C‘e‘a‘b‘ f‘a‘c‘g‘

Cl,l C2.1 CS,l Cl.l CZ‘Z C3‘2 Cl,l CZ.l C3‘3 Cl‘l CZ,Z CSA

Minor Cycle

Fic. 2.1. An Ezample of a Seven-item, Three-disk Broadcast Program

2.1.3. Broadcast Disks. A hierarchical dissemination architecture, called Broad-
cast Disk (Bdisk), was introduced in [1]. Data items are assigned to different logical
disks so that data items in the same range of access probabilities are grouped on the
same disk. Data items are then selected from the disks for broadcast according to
the relative broadcast frequencies assigned to the disks. This is achieved by further
dividing each disk into smaller, equal-size units called chunks, broadcasting a chunk
from each disk each time, and cycling through all the chunks sequentially over all the
disks. A minor cycle is defined as a sub-cycle consisting of one chunk from each disk.
Consequently, data items in a minor cycle are repeated only once. The number of
minor cycles in a broadcast cycle equals the Least Common Multiple (LCM) of the
relative broadcast frequencies of the disks. Conceptually, the disks can be conceived
as real physical disks spinning at different speeds, with the faster disks placing more
instances of their data items on the broadcast channel. The algorithm that generates
broadcast disks is given below.

Algorithm 1 Broadcast Disks Generation Algorithm.
Order the items in decreasing order of access popularities
Allocate items in the same range of access probabilities on a different disk
Choose the relative broadcast frequency rel_freq(i) (in integer) for each disk ¢
Split each disk into a number of smaller, equal-size chunks:
Calculate max_chunks as the LCM of the relative frequencies
Split each disk ¢ into num_chunk(i) = mazx_chunks/rel_freq(i) chunks
let C;; be the jt* chunk in disk i
Create the broadcast program by interleaving the chunks of each disk:
for i:=0 to maz_chunks—1 do
for j:=0 to num_disks do
broadcast chunk Cj
end for
: end for

—
=

,(i mod num_chunks(j))

— =
@

Fig. 2.1 illustrates an example in which seven data items are divided into three
groups of similar access probabilities and assigned to three separate disks in the broad-
cast. These three disks are interleaved in a single broadcast cycle. The first disk

4 J. Xu and J. Liu

rotates at a speed twice as fast as the second one and four times as fast as the slowest
disk (the third disk). The resulting broadcast cycle consists of four minor cycles.

We can observe that the Bdisk method can be used to construct a fine-grained
memory hierarchy such that items of higher popularities are broadcast more frequently
by varying the number of the disks, the size, relative spinning speed, and assigned
data items of each disk.

2.1.4. Optimal Push Scheduling. Optimal broadcast schedules have been
studied in [15, 33, 35, 36]. [15] discovered a square-root rule for minimizing access
latency (a similar rule was proposed in a previous work [36], which considered fixed-
size data items only). The rule states that the minimum overall expected access
latency is achieved when the following two conditions are met:

1. instances of each data item are equally spaced on the broadcast channel;

2. the spacing s; of two consecutive instances of each item ¢ is proportional to
the square-root of its length [; and inversely proportional to the square-root
of its access probability ¢;, i.e.,

or
24i
(2.3) iy = constant.
i

Since these two conditions are not always simultaneously achievable, the online
scheduling algorithm can only approximate the theoretical results. An efficient heuris-
tic scheme was introduced in [35]. This scheme maintains two variables, B; and Cj,
for each item i. B; is the earliest time when the next instance of item i should begin
transmission, and C; = B; + s;. C; could be interpreted as the “suggested worse-case
completion time” for the next transmission of item i. Let N be the number of items
in the database and T be the current time. The heuristic online scheduling algorithm
is given below.

Algorithm 2 Heuristic Algorithm for Optimal Push Scheduling.
1: Calculate optimal spacing s; for each item ¢ using Equation (2.2)
2: Initialize T =0,B; =0, and C; = s;, i =1,2,..., N
3: while the system is not terminated do
4: Determine a set of item S = {i|B; <T,1<i< N}
5: Select to broadcast the item %,,;, with the min C; value in S (break ties arbi-

trarily)
6: Bimin = Cimin
7 Cii. =B; .. +8i...
8: Wait for the completion of transmission for item 4.,y
9: T=T+ limin

10: end while

This algorithm has a complexity of O(logN) for each scheduling decision. Simula-
tion results show that this algorithm performs close to the analytical lower bounds [35].
In [15], a low-overhead bucket-based scheduling algorithm based on the square-
root rule was also provided. In this strategy, the database is partitioned into several
buckets which are kept as cyclical queues. The algorithm chooses to broadcast the

Broadcast Scheduling Algorithms for Wireless Data Dissemination 5

&, Sallite

v

[Al B Jc[D[B[] F]~

Downlink Channel

Broadcast

Client 1 Client 2 Client N

F1G. 2.2. Architecture of On-Demand Broadcast

first item in the bucket for which the expression (T — R(I;))?qm /lm evaluates to the
largest value. In the expression, T is the current time, R(i) is the time at which an
instance of item ¢ was most recently transmitted, I,,, is the first item in bucket m,
and ¢, and [,, are average values of ¢;’s and [;’s for the items in bucket m. The
bucket-based scheduling algorithm is similar to the Bdisk approach, but in contrast
to the Bdisk approach, which has a fixed broadcast schedule, the bucket-based algo-
rithm schedules the items online. As a result, they differ in the following aspects.
First, a broadcast program generated using the Bdisk approach is periodic, whereas
the bucket-based algorithm cannot guarantee that. Second, in the bucket-based algo-
rithm, every broadcast instance is filled up with some data based on the scheduling
decision, whereas the Bdisk approach may create “holes” in its broadcast program. Fi-
nally, the broadcast frequency for each disk is chosen manually in the Bdisk approach,
while the broadcast frequency for each item is obtained analytically to achieve the
optimal overall system performance in the bucket-based algorithm. Regrettably, no
study has been carried out to compare their performance.

In a separate study [32], the broadcast system was formulated as a determin-
istic Markov Decision Process (MDP). [32] proposed a class of algorithms Priority
Index Policies With Length (PIPWL-vy) which broadcast the item with the largest
(pi/L;))Y(T — R(i)), where the parameters are defined as above. In the simulation
experiments, PIPWL-(0.5 showed a better performance than other settings did.

2.2. On-Demand Data Scheduling. As can be seen, push-based wireless data
broadcasts are not tailored to a particular user’s needs but rather satisfy the needs
of the majority. Further, push-based broadcasts are not scalable to a large database
size and react slowly to workload changes. To alleviate these problems, many recent
research studies on wireless data dissemination have proposed using on-demand data
broadcast (e.g., [5, 6, 16, 33]).

A wireless on-demand broadcast system supports both broadcast and on-demand
services through a broadcast channel and a low-bandwidth uplink channel (see Fig. 2.2

6 J. Xu and J. Liu

for an example). The uplink channel can be a wired or a wireless link. When a client
needs a data item, it sends to the server an on-demand request for the item through
the uplink. Client requests are queued up (if necessary) at the server upon arrival. The
server repeatedly chooses an item from among the outstanding requests, broadcasts
it over the broadcast channel, and removes the associated request(s) from the queue.
The clients monitor the broadcast channel and retrieve the item(s) they require.

The data scheduling algorithm in on-demand broadcast determines which request
to service from its queue of waiting requests at every broadcast instance. In the fol-
lowing, on-demand scheduling techniques for fixed-size items and variable-size items,
and energy-efficient on-demand scheduling are described.

2.2.1. On-Demand Scheduling for Equal-Size Items. Early studies on on-
demand scheduling considered only equal-size data items. The average access time
performance was used as the optimization objective. In [13] (also described in [36]),
three scheduling algorithms, namely MRF, MRFL, and LWF, were proposed and
compared to the FCF'S algorithm:

e First-Come-First-Served (FCFS): Data items are broadcast in the order
of their requests. This scheme is simple, but it has a poor average access
performance for skewed data requests.

o Most Requests First (MRF): The data item with the largest number of
pending requests is broadcast first; ties are broken in an arbitrary manner.

e MRF Low (MRFL): MRFL is essentially the same as MRF, but it breaks
ties in favor of the item with the lowest request probability.

e Longest Wait First (LWF): The data item with the largest total waiting
time, i.e., the sum of the time that all pending requests for the item have
been waiting, is chosen for broadcast.

Numerical results presented in [13] yield the following observations: When the
load is light, the average access time is insensitive to the scheduling algorithm used.
This is expected because few scheduling decisions are required in this case. As the load
increases, MRF yields the best access time performance when request probabilities
on the items are equal. When request probabilities follow the Zipf distribution [45],
LWF has the best performance and MRFL is close to LWF. However, LWF is not a
practical algorithm for a large system. This is because at each scheduling decision, it
needs to recalculate the total accumulated waiting time for every item with pending
requests in order to decide which one to broadcast. Thus, MRFL was suggested as a
low-overhead replacement of LWF in [13].

However, it was observed in [6] that MRFL has a performance as poor as MRF for
a large database system. This is because, for large databases, the opportunity for tie-
breaking diminishes and thus MRFL degenerates to MRF. Consequently, [6] proposed
a low-overhead and scalable approach called RzW. The RxW algorithm schedules for
the next broadcast the item with the maximal R x W value, where R is the number
of outstanding requests for that item and W is the amount of time that the oldest of
those requests has been waiting for. Thus, Rz W broadcasts an item either because it is
very popular or because there is at least one request that has waited for a long time.
The method could be implemented inexpensively by maintaining the outstanding
requests in two sorted orders, one ordered by R values and the other ordered by W
values. In order to avoid exhaustive search of the service queue, a pruning technique
was proposed to find the maximal R x W value. Simulation results show that the
performance of RxW is close to LWF, meaning that it is a good alternative for LWF
when scheduling complexity is a major concern.

Broadcast Scheduling Algorithms for Wireless Data Dissemination 7

To further improve scheduling overheads, a parameterized algorithm was devel-
oped based on RzW [6]. The parameterized RxW algorithm selects the first item it
encounters in the searching process whose R x W value is greater than or equal to
a X threshold, where « is a system parameter and threshold is the running average
of the R x W values of the requests that have been serviced. Varying the a parameter
can adjust the performance trade-off between access time and scheduling overhead.
For example, in the extreme case where a = 0, this scheme selects the top item ei-
ther in the R list or in the W list; this has the least scheduling complexity, but its
access time performance may not be very good. With larger a values, the access time
performance can be improved, but the scheduling complexity is increased as well.

2.2.2. On-Demand Scheduling for Variable-Size Items. On-demand schedul-
ing for applications with variable data item sizes was studied in [5]. To evaluate the
performance for items of different sizes, a new performance metric called stretch was
used:

e Stretch: the ratio of the access time of a request to its service time, where
the service time is the time needed to complete the request if it were the only
job in the system.

Compared with access time, stretch is believed to be a more reasonable metric for
items of variable sizes since it takes into consideration the size (i.e., service time) of a
requested data item. Based on the stretch metric, four different algorithms have been
investigated [5]. All of the four algorithms considered are preemptive in the sense that
the scheduling decision is re-evaluated after broadcasting any page of a data item (it
is assumed that a data item consists of one or more pages that have a fixed size and
are broadcast together in a single data transmission).

¢ Preemptive Longest Wait First (PLWF): This is the preemptive version
of the LWF algorithm. The LWF criterion is applied to select the subsequent
data item to be broadcast.

e Shortest Remaining Time First (SRTF): The data item with the short-
est remaining time is selected.

e Longest Total Stretch First (LTSF): The data item which has the largest
total current stretch is chosen for broadcast. Here, the current stretch of a
pending request is the ratio of the time the request has been in the system
thus far to its service time.

e MAX algorithm: A deadline is assigned to each arriving request, and it
schedules for the next broadcast the item with the earliest deadline. In com-
puting the deadline for a request, the following formula is used:

(2.4) deadline = arrival_time + service_time X Syax,

where Sprax is the maximum stretch value of the individual requests for
the last satisfied requests in a history window. To reduce computational
complexity, once a deadline is set for a request, this value does not change
even if Syr4x is updated before the request is serviced.

The trace-based performance study carried out in [5] indicates that none of these
schemes is superior to the others in all cases. Their performance really depends on the
system settings. Overall, the MAX scheme, with a simple implementation, performs
quite well in both the worst and average cases in access time and stretch measures.

2.2.3. Energy-Efficient Scheduling. Datta et al. [12] took into consideration
the energy saving issue in on-demand broadcasts. The proposed algorithms broadcast

8 J. Xu and J. Liu

the requested data items in batches, using an existing indexing technique [21] to index
the data items in the current broadcast cycle. This way, a mobile client may tune into
a small portion of the broadcast instead of monitoring the broadcast channel until
the desired data arrives. Thus, the proposed method is energy efficient. The data
scheduling is based on a priority formula:

2.5 Priority = IF45P x PF
(2.5) Yy)

where I'F (Ignore Factor) denotes the number of times that the particular item has
not been included in a broadcast cycle, PF (Popularity Factor) is the number of
requests for this item, and ASP (Adaptive Scaling Factor) is a factor that weights
the significance of IF and PF. Two sets of broadcast protocols, namely Constant
Broadcast Size (CBS) and Variable Broadcast Size (VBS), were investigated in [12].
The CBS strategy broadcasts data items in decreasing order of the priority values
until the fixed broadcast size is exhausted. The VBS strategy broadcasts all data
items with positive priority values. Simulation results show that the VBS protocol
outperforms the CBS protocol at light loads, while at heavy loads the CBS protocol
predominates.

2.3. Hybrid Data Scheduling. Push-based data broadcast cannot adapt well
to a large database and a dynamic environment. On-demand data broadcast can
overcome these problems. However, it has two main disadvantages: i) more uplink
messages are issued by mobile clients, thereby adding demand on the scarce uplink
bandwidth and consuming more battery power on mobile clients; ii) if the uplink
channel is congested, the access latency will become extremely high. A promising ap-
proach, called hybrid broadcast, is to combine push-based and on-demand techniques
so that they can complement each other. In the design of a hybrid system, three
issues need to be considered:

1. access method from a client’s point of view, i.e., where to obtain the requested
data and how;
2. bandwidth/channel allocation between the push-based and on-demand deliv-
eries;
3. assignment of a data item to either push-based broadcast, on-demand broad-
cast or both.
Concerning these three issues, there are different proposals for hybrid broadcast in
the literature. In the following, we introduce the techniques for balancing push and
pull and adaptive hybrid broadcast.

2.3.1. Balancing Push and Pull. A hybrid architecture was first investigated
in [36, 37]. The model is shown in Fig. 2.3. In that model, items are classified
as either frequently requested (f-request) or infrequently requested (i-request). It is
assumed that clients know which items are f-requests and which are i-requests. The
model services f-requests using a broadcast cycle and i-requests on demand. In the
downlink scheduling, the server makes K consecutive transmissions of f-requested
items (according to a broadcast program), followed by the transmission of the first
item in the i-request queue (if at least one such request is waiting). Analytical results
for the average access time were derived in [37].

In [4], the push-based Bdisk model was extended to integrate with a pull-based
approach. The proposed hybrid solution, called Interleaved Push and Pull (IPP),
consists of an uplink for clients to send to the server pull requests for the items that
are not on the push-based broadcast. The server interleaves the Bdisk broadcast with

Broadcast Scheduling Algorithms for Wireless Data Dissemination 9

i-requests
O%

data transmission

broadcast cycle

F1c. 2.3. Architecture of Hybrid Broadcast

the responses to pull requests on the broadcast channel. To improve the scalability
of IPP, three different techniques were proposed:

1. Adjust the assignment of bandwidth to push and pull. This introduces a
trade-off between how fast the push-based delivery is executed and how fast
the queue of pull requests is served.

2. Provide a pull threshold 7T'. Before a request is sent to the server, the client
first monitors the broadcast channel for T time. If the requested data does
not appear in the broadcast channel, the client sends a pull request to the
server. This technique avoids overloading the pull service because a client
will only pull an item that would otherwise have a very high push latency.

3. Successively chop off the pushed items from the slowest part of the broadcast
schedule. This has the effect of increasing the available bandwidth for pulls.
The disadvantage of this approach is that if there is not enough bandwidth
for pulls, the performance might degrade severely since the pull latencies for
non-broadcast items will be extremely high.

2.3.2. Adaptive Hybrid Broadcast. Adaptive broadcast strategies were stud-
ied for dynamic systems [25, 31]. These studies are based on the hybrid model in which
the most frequently accessed items are delivered to clients based on flat broadcast,
while the least frequently accessed items are provided point-to-point on a separate
channel. In [31], a technique that continuously adjusts the broadcast content to
match the hot-spot of the database was proposed. To do this, each item is associated
with a temperature that corresponds to its request rate. Thus, each item can be in
one of three possible states, namely wvapor, liquid, and frigid. Vapor data items are
those heavily requested and currently broadcast; liquid data items are those having
recently received a moderate number of requests which is still not large enough for
immediate broadcast; frigid data items refer to the cold items. The access frequency,
and hence the state, of a data item can be dynamically estimated from the number
of on-demand requests received through the uplink channel. For example, liquid data
can be heated to vapor data if more requests are received. Simulation results show
that this technique adapts very well to rapidly changing workloads.

Another adaptive broadcast scheme was discussed in [25], which assumes fixed
channel allocation for data broadcast and point-to-point communication. The idea
for adaptive broadcast is to maximize (but not overload) the use of available point-
to-point channels so that a better overall system performance can be achieved.

3. Time-Critical On-Demand Broadcast. In many situations, user requests
are associated with time constraints. Consider a driver who queries a traffic informa-
tion server to select one of several alternative routes at some point ahead [14]. Clearly,

10 J. Xu and J. Liu

it is necessary for the server to provide the driver with the traffic information (e.g.,
which route is less congested) before he reaches that point; otherwise, the information
is of no value to the driver. In this case, it is necessary for users to specify for each
request a deadline beyond which she is no longer interested (or less interested) in the
requested information. On-demand broadcast with time constraints is referred to as
time-critical on-demand broadcast [43]. This section introduces a newly developed
scheduling algorithm for time-critical on-demand broadcast.

We start by illustrating the factors affecting the performance of time-critical
broadcast scheduling. The broadcast duration of an item is referred to as a broadcast
tick. We compare EDF (earliest deadline first) and MRF (most requests first), two
typical scheduling algorithms in unicast and broadcast respectively. At each broad-
cast tick, EDF broadcasts the item with the shortest remaining lifetime to cater for
the urgency of requests. MRF, on the other hand, broadcasts the item that has the
largest number of pending requests to account for the productivity of broadcasting.
As shall be shown in Section 3.2, EDF and MRF respectively achieve good perfor-
mance for certain workloads only. This suggests an integration of the urgency and
productivity factors to improve scheduling performance. Intuitively,

e For two items with the same number of pending requests, the one with closer
deadline should be broadcast first.

e For two items with the same deadline, the one with more pending requests
should be broadcast first.

Motivated by the above observations, a new scheduling algorithm, called SIN-a
(Slack time Inverse Number of pending requests), has been proposed [43]. Specif-
ically, the sin.a value of each item that has at least one pending request is given
by

slack _ 1stDeadline — clock

num¢ num¢

?

where slack is the duration from the current time (i.e., clock) to the deadline of the
most urgent pending request for the item (i.e., 1stDeadline), num is the number
of pending requests for the item, and a > 0 is a relative weight of productivity to
urgency. At each broadcast tick, the item with the minimum sin.a value is broadcast
on the downlink channel. It is easy to see that the larger the value of a, the more
influential the number of pending requests.

3.1. An Efficient Implementation. A straightforward implementation of SIN-
a is to compute, at each broadcast tick, the sin.a values of all items that have pending
requests and to broadcast the one with the minimum sén.a value. Such an implemen-
tation has a scheduling complexity of at least O(m), where m is the number of items
with pending requests. A more efficient implementation of SIN-« is presented in the
section.

The pending requests in the service queue are grouped by the requested items.
Two data structures, an S-list and an N-list, are used to index the requested items
in the service queue. Each item has one entry in the S-list and N-list respectively.
As shown in Figure 3.1, the S-list is a bidirectional linked list where the items are
sorted in ascending order of the associated earliest deadline (i.e., in ascending order
of slack). In the N-list, the items having the same number of pending requests are
first structured into a min-heap built on the key of the earliest deadline. The roots
of the heaps are then organized into a bidirectional linked list in descending order of

Broadcast Scheduling Algorithms for Wireless Data Dissemination 11

o Stop: Max1stDeadline =8

a b c d e f h
SList
(1stDeadline) v . ' »
- MinN =4.6
d b a e
N-List "
(requests) clock=0
¢ f dpha =1
2
h MIN =175
2

FiG. 3.1. Indexing Structures of the Service Queue

the number of pending requests (i.e., num). The heap that indexes the items with n
pending requests is referred to as heap-n.

At each broadcast tick, the server broadcasts the item with the minimum sin.a
value. The proposed data structures reduce the search space of candidate items in
two aspects. First, since the requested items in each min-heap of the N-list have the
same number of requests and the min-heap is constructed based on the key of the
earliest deadline, the root item of each heap has the minimum sin.a value among
all the items in the heap. Thus, non-root items in the N-list can be excluded from
the search space. Moreover, the search space can be further pruned by searching the
S-list and N-list in an alternate fashion. Starting from the heads of the two lists, we
sequentially examine the entries therein. Two values, MinN and MazxlstDeadline,
are maintained to cut off the search space in the N-list and S-list respectively. Let
MIN denote the minimum sin.a value found so far. Since the S-list is sorted in
ascending order of slack, an unexamined item has a sin.a value less than MIN only
if its num value exceeds

NextS\ =

MinN = ()
" MIN)

where NeztS is the slack value of the next item in the S-list. Similarly, since the

N-list is sorted in descending order of num, an unexamined item has a smaller sin.«

value than M IN only if its slack value is less than
MaxzS = (NextN)* - MIN,
i.e., the corresponding 1stDeadline value is less than
MazlstDeadline = (NextN)* - MIN + clock,

where NextN is the num value of the next item in the N-list. MIN, MinN, and
MaxlstDeadline are updated after examining each item. The search process con-
tinues until the list tails are reached or the next items in the lists violate the neces-
sary conditions indicated by MinN and MazxlstDeadline. The pseudo-code of the
scheduling algorithm is presented in Algorithm 3, where pn and ps point to the next
items in the N-list and S-list respectively.

12 J. Xu and J. Liu

Algorithm 3 Efficient Search Algorithm for SIN-a.
1: MIN := o0
2: pn := the head of the N-list
3: ps := the head of the S-list
4: while (pn # nil or ps # nil) do
5: if pn # nil then
6: calculate sin.apy, the sin.a value of the item pointed by pn
7: if sin.ap, < MIN then MIN := sin.ap,
8 if ps and pn refer the same item then advance ps to the next unexamined
item in the S-list whose entry in the N-list is a heap root

9: advance pn to the next unexamined item in the N-list

10: if ps # nil then MinN := (ps_’ISth\f;}%"e_d“k)%

11: if pn # nil and pn—num < MinN then pn := nil

12: if pn # nil then MazlstDeadline := (pn—num)® - MIN + clock

13: if ps # nil and ps— 1stDeadline > Maz1stDeadline then ps := nil

14: end if

15: if ps # nil then

16: calculate sin.ays, the sin.a value of the item pointed by ps

17: if sin.aps < MIN then MIN := sin.aps

18: if ps and pn refer the same item then advance pn to the next unexamined
item in the N-list

19: advance ps to the next unexamined item in the S-list whose entry in the N-list
is a heap root

20: repeat lines 10-13

21: end if

22: end while

Figure 3.1 shows an example. Suppose that the current clock is 0 and « is
set to 1. First, we examine the first item d in the N-list and get MIN = 2.4,
MinN = 1.7, and MazlstDeadline = 9.6. Then, we go ahead to examine the first
item a in the S-list and obtain a smaller sin.a value 2.0 for a. Therefore, we update
MIN = 2.0, MinN = 3.5, and Max1stDeadline = 8.0. Next, we go to the second
item b in the N-list, whose sin.a value is 1.75, and we update MIN = 1.75 and
MinN = 8.0 (MazlstDeadline remains at 8.0 since pn becomes nil). The searching
ceases here since the remaining items do not have a 1stDeadline value greater than
MazlstDeadline and an N value less than MinN and, hence, cannot have a sin.a
value less than MIN. In total, we only need to examine three item entries to find
the item b to broadcast.

When a new request arrives, the request is inserted into the service queue and the
corresponding request group is updated. If the request group is empty, a new item
entry is created for the requested item and two index entries are inserted into the S-list
and heap-1 of the N-list respectively. Otherwise, the earliest deadline of the requested
item is updated if necessary, and the S-list is adjusted accordingly. Moreover, the
entry of the requested item in the N-list is moved from heap-x to heap-(x + 1), if there
were x pending requests for the item before the new request arrival. After selecting
an item to broadcast, the scheduler removes from the service queue the requests for
the item as well as those whose lifetimes will expire in the next broadcast tick.

Broadcast Scheduling Algorithms for Wireless Data Dissemination 13

Description | Default | Range

Number of Pages 4923 -

Request Rate Scaling Factor 1 [0.25-128]

Service Rate (pages/second) 10 -

Overall Mean Relative Deadline (seconds) | 60 -
TABLE 3.1

Workload Parameters and Settings

3.2. Performance Evaluation. A trace-driven simulator has been developed
to evaluate the performance of the SIN algorithm. Real trace collected from the World
Cup 98 website [49] (i.e., the day-38 trace) was used to simulate the requests made by
clients. The day-38 trace contains over 7 million requests for 4923 distinct web pages.!
The average request rate is 83 per second. The access counts of different pages sorted
in descending order are shown in Figure 3.2. It can be seen that the access pattern
follows a Zipf-like distribution, which is consistent with the observation made in the
literature [10]. To simulate different levels of workloads, the time scale of the trace was
changed by introducing a request rate scaling factor f. The inter-arrival time between
two consecutive requests was set to the actual time logged in the trace divided by f.
It is obvious that the higher the value of f, the heavier the workload. The service
rate (i.e., capacity) of the broadcast channel is described in the number of pages that
can be transmitted per second. The default service rate was set at 10 pages/sec. To
model the time constraints of requests, each request was assigned a relative deadline
d randomly generated based on a specified distribution (i.e., exponential, uniform,
or fixed distributions) with the assigned mean value of the requested page. In the
default setting, we differentiate the time requirements for different pages and assume
the mean relative deadlines of requests for different pages are uniformly distributed
between 0 and 120 seconds. Under this setting, the overall mean relative deadline
of requests is 60 seconds. The workload parameters used in the experiments are
summarized in Table 3.1. Each simulation run started with an empty service queue.
The first 1,000,000 requests were considered the start-up period, and performance
statistics were collected for the subsequent 2,000,000 requests.

Recall that in SIN-a, a > 0 is a factor rating the relative importance of pro-
ductivity and urgency for candidate data items (i.e., web pages). It was observed
that an a value between 1 and 4 gave the best overall performance, but no a value
consistently dominates the other values. The performance difference between the a
values from 1 to 4 is not very significant. Therefore, in the rest of this section, SIN-1
is used as the representative of SIN-a. Note that the SIN-a algorithm would obtain
even better performance if the value of a can be fine tuned for specific workloads.

SIN-1 is compared with the existing algorithms EDF, MRF, and the recently
proposed RzW [6]. With RzW, the server broadcasts the page that has either a large
number of pending requests or a long waiting time. The objective of RxWis to reduce
the response time of requests. Figures 3.3 through 3.5 shows the request drop rates
as a function of the scaling factor f.

Comparing different scheduling algorithms, the SIN-1 algorithm performs the best
throughout the tested range of scaling factor. The improvement of SIN-1 relative to
EDF is up to 13.1%, 15.3%, and 38.0% for exponential, uniform, and fixed deadline

nterested readers are referred to [7] for more details of the WorldCup98 web server traces.

14

Access Count (log scale)

Request Drop Rate (%)

J. Xu and J. Liu

100000 o- ---e--
10000 +
1000
100 +
10
1 1 1 1
1 10 100 1000
Page ID (log scale)
F1a. 3.2. Page Access Counts for the Day-38 Trace (4923 Pages)
T T T T T T T T T T
45 -
o EewE |
35 r -
30 F -
25 5‘ i
20F 7 : EDF —+— -
! MRF - IR
15 RXW — &
0k SIN-1 - o |
5F _
0 1 1 1 1 1 1 1 1
025 050 1 2 4 8 16 32 64 128
Request Rate Scaling Factor
F1G. 3.3. Request Drop Rates for Exrponentially Distributed Deadlines

distributions respectively and the improvement relative to MRF is at least 10.8%,
16.8%, and 49.8% respectively. Since MRF and RzW ignore the request deadlines,
their drop rates are high even when the system is lightly loaded (see the left parts of
Figures 3.3 through 3.5). In contrast, no requests are dropped by SIN-1 and EDF at
low system loads. When the system is heavily loaded (see the right parts of Figures 3.3
through 3.5), SIN-1 performs substantially better than both MRF and EDF.

It is interesting to note that, among the three deadline distributions, the relative

performance of MRF and RzW against EDF and SIN-1 is the worst when the relative
deadline is fixed. This can be explained as follows. If the relative deadline spans

Broadcast Scheduling Algorithms for Wireless Data Dissemination 15

0 1 T T T T T T T T]
35 r
S ot
3
¢ 25
§2or o |
B =l EDF —— |
= °r 2 MRF &
X 10} 7 RXW ----& --- i
A ’ SIN-1 ---o& -
5 | i
o Le _ /| 1 1 1 1 1 1 1 1
025 050 1 2 4 8 16 32 64 128
Request Rate Scaling Factor
F1G. 3.4. Request Drop Rates for Uniform Deadlines
35 T T T T T T T T T T
________ g B |
g
30 L B _
—~ S
[} 25 - -
8 20 ’ = .
) /,’ e P S
I 15 @ ps o -
X 10 o A -
’ ‘ SIN-1 ---o---
5 | i
1 1 1 1 1 1 1 1

0
025 050 1 2 4 8 16 32 64 128
Request Rate Scaling Factor

F1G. 3.5. Request Drop Rates for Fized Deadlines

over a range, a newly arrived request has a chance of overwriting the slack time of
the requested item if there exist pending requests for the item already. Therefore,
MRF and RzW, to some extent, take the urgency factor into consideration by first
broadcasting the item with the largest number of pending requests and/or the longest
waiting time. However, a new request never overwrites the slack time of the requested
item under fixed deadline distribution. In this case, MRF and Rz W completely ignore
the urgency factor and performs much worse than SIN-1.

4. Other Related Issues.

16 J. Xu and J. Liu

4.1. Fault-tolerant Broadcast. Wireless transmission is error-prone. Data
might be corrupted or lost due to many factors like signal interference, etc. When
errors occur, mobile clients have to wait for the next copy of the data if no special
precaution is taken. This will increase both access time and tune-in time. To deal
with unreliable wireless communication, the basic idea is to introduce controlled re-
dundancy in the broadcast program. Such redundancy allows mobile clients to obtain
their data items from the current broadcast cycle even in the presence of errors. This
eliminates the need to wait for the next broadcast of the data whenever any error
occurs. Studies on fault-tolerant broadcast disks have been performed in [9] and [34].

4.2. Data Scheduling over Multiple Broadcast Channels. It is argued in
[29] that multiple physical channels cannot be coalesced into a single high-bandwidth
channel. Hence, recent studies have been working on data scheduling over multiple
broadcast channels [26, 27, 29]. In [27], to minimize the average access delay for data
items in the broadcast program, a heuristic algorithm V F* was developed to allocate
data over a number of channels. While previous studies addressed data scheduling
and indexing separately, [26, 29] considered the scheduling problem of both data and
index over multiple channels. Various server broadcast and client access protocols
were investigated in [29]. In [26], the allocation problem aimed at minimizing both the
average access time and the average tune-in time. It was mapped into the personnel
assignment problem from which the optimization techniques were derived to solve the
problem.

4.3. Handling Updates for Data Broadcast. In reality, many applications
that can best profit from a broadcast-based approach are required to update their
data frequently over time (e.g., stock quotation systems and traffic reports). Data
consistency issues for transactional operations in push-based broadcast were explored
in [28, 30]. For a wireless broadcast environment, the correctness criteria of ACID
transactions might be too restrictive. Thus, these studies relaxed some of the require-
ments and new algorithms have been developed. In [28], the correctness criterion for
read-only transactions is that each transaction reads consistent data, i.e., the read set
of each read-only transaction must form a subset of a consistent database state. The
proposed schemes maintain multiple versions of items either on air or in a client cache
to increase the concurrency of client read-only transactions. In [30], the correctness
criterion employed is update consistency, which ensures 1) the mutual consistency of
data maintained by the server and read by clients; and 2) the currency of data read
by clients. Two practical schemes, F-Matriz and R-Matriz, were proposed to effi-
ciently detect update consistent histories by broadcasting some control information
along with data.

4.4. Air Indexing. Energy conservation is a scarce resource on mobile clients,
which ranges from only a few hours to about half a day under continuous use. To
retrieve a data item in wireless data broadcast, if without any index information,
a client has to continuously monitor the broadcast until the data arrives. This will
consume a lot of energy since the client has to remain active during its waiting time. A
solution to this problem is air indezxing. The basic idea is to include index information
about the arrival times of data items on the broadcast channel. By accessing the index,
mobile clients are able to predict the arrivals of their desired data. Thus, they can stay
in power saving mode during waiting time and tune into the broadcast channel only
when the data items of their interests arrive. Several traditional disk-based indexing
techniques such as BT-tree have been extended for air indexing [11, 17, 18, 21, 22,

Broadcast Scheduling Algorithms for Wireless Data Dissemination 17

Data bucket I Index bucket

A Bcast

F1G. 4.1. Data Organization on Wireless Broadcast Channels

24]. A new exponential index has also been proposed in [39]. To facilitate search of
data items via air index, each data bucket includes an offset to the beginning of the
next index bucket. Taking Figure 4.1 as an example, the general access protocol for
retrieving data involves the following steps:

e Initial probe: The client tunes into the broadcast channel at bucket b and
determines when the next index bucket is broadcast. The client goes to the
power saving mode.

e Index search: The client tunes into the broadcast channel again at index
bucket 3 and selectively accesses a number of index buckets (i.e., index buckets
3, 5, and 6) to find out when to get the desired data held in bucket p. Again,
it goes to the power saving mode.

e Data retrieval: When bucket p arrives, the client downloads it and retrieves
the desired data.

4.5. Client Cache Management. An important issue relating to wireless data
dissemination is client data caching. Client data caching is a common technique for
improving access latency and data availability [41]. In the framework of a mobile
wireless environment, this is much more desirable due to constraints such as limited
bandwidth and frequent disconnections. However, frequent client disconnections and
movements between different cells make the design of cache management strategies
a challenge. [2] discussed methods for keeping clients’ caches consistent with the
updated data values at the server for the Bdisk systems. The techniques of invalidating
or updating cached copies were investigated. The issues of cache consistency, cache
replacement, and cache prefetching have also been investigated in [3, 8, 38, 42, 44].

5. Summary. This chapter has presented various broadcast scheduling tech-
niques for wireless data dissemination. We surveyed push-based, on-demand, and
hybrid scheduling algorithms. Push-based broadcast is attractive when access pat-
terns are known a priori, while on-demand broadcast is desirable for dynamic access
patterns. Hybrid data broadcast offers more flexibility by combining push-based and
on-demand broadcasts. In addition, we have introduced a newly developed scheduling
algorithm called SIN for time-critical on-demand broadcast. Finally, some other issues
of wireless data dissemination, such as fault-tolerant broadcast, updates handling, air
indexing, and client cache management, were briefly reviewed.

REFERENCES

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: Data management for

18

(13]

[14]

(15]

(16]

(23]

J. Xu and J. Liu

asymmetric communications environments. In Proceedings of ACM SIGMOD Conference
on Management of Data, pages 199-210, San Jose, CA, USA, May 1995.

S. Acharya, M. Franklin, and S. Zdonik. Disseminating updates on broadcast disks. In Proceed-
ings of the 22nd International Conference on Very Large Data Bases (VLDB’96), pages
354-365, Mumbai (Bombay), India, September 1996.

S. Acharya, M. Franklin, and S. Zdonik. Prefetching from a broadcast disk. In Proceedings of
the 12th International Conference on Data Engineering (ICDE’96), pages 276-285, New
Orleans, LA, USA, February 1996.

S. Acharya, M. Franklin, and S. Zdonik. Balancing push and pull for data broadcast. In Pro-
ceedings of ACM SIGMOD Conference on Management of Data, pages 183-194, Tucson,
AZ, USA, May 1997.

S. Acharya and S. Muthukrishnan. Scheduling on-demand broadcasts: New metrics and algo-
rithms. In Proceedings of the 4th Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom’98), pages 43-54, Dallas, TX, USA, October 1998.

D. Aksoy and M. Franklin. R x W: A scheduling approach for large-scale on-demand data
broadcast. IEEE/ACM Transactions on Networking, 7(6):846-860, December 1999.

M. Arlitt and T. Jin. A workload characterization study of the 1998 world cup web site. IEEE
Network, 14(3):30-37, May/June 2000.

D. Barbara and T. Imielinski. Sleepers and workaholics: Caching strategies for mobile envi-
ronments. In Proceedings of ACM SIGMOD Conference on Management of Data, pages
1-12, Minneapolis, MN, USA, May 1994.

S. K. Baruah and A. Bestavros. Pinwheel scheduling for fault-tolerant broadcast disks in
real-time database systems. In Proceedings of the 13th International Conference on Data
Engineering (ICDE’97), pages 543-551, Birmingham, UK, April 1997.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-like distributions:
Evidence and implications. In Proc. IEEE INFOCOM’99, pages 126-134, March 1999.
M.-S. Chen, K.-L. Wu, and P. S. Yu. Optimizing index allocation for sequential data broad-
casting in wireless mobile computing. IEEE Trans. on Knowledge and Data Engineering

(TKDE), 15(1):161-173, Jan./Feb. 2003.

A. Datta, D. E. VanderMeer, A. Celik, and V. Kumar. Broadcast protocols to support effi-
cient retrieval from databases by mobile users. ACM Transactions on Database Systems
(TODS), 24(1):1-79, March 1999.

H. D. Dykeman, M. Ammar, and J. W. Wong. Scheduling algorithms for videotex systems under
broadcast delivery. In Proceedings of IEEE International Conference on Communications
(ICC’86), pages 1847-1851, Toronto, Canada, June 1986.

J. Fernandez and K. Ramamritham. Adaptive dissemination of data in time-critical asymmetric
communication environments. In Proc. Euromicro Real-Time Systems Symp., pages 195~
203, 1999.

S. Hameed and N. H. Vaidya. Efficient algorithms for scheduling data broadcast. ACM/Baltzer
Journal of Wireless Networks (WINET), 5(3):183-193, 1999.

Q. L. Hu, D. L. Lee, and W.-C. Lee. Performance evaluation of a wireless hierarchical data
dissemination system. In Proceedings of the 5th Annual ACM/IEEE International Confer-
ence on Mobile Computing and Networking (MobiCom’99), pages 163-173, Seattle, WA,
USA, August 1999.

Q. L. Hu, W.-C. Lee, and D. L. Lee. A hybrid index technique for power efficient data broadcast.
Journal of Distributed and Parallel Databases (DPDB), 9(2):151-177, March 2000.

Q. L. Hu, W.-C. Lee, and D. L. Lee. Power conservative multi-attribute queries on data
broadcast. In Proceedings of the 16th International Conference on Data Engineering
(ICDE’2000), pages 157-166, San Diego, CA, USA, February 2000.

V. Liberatore. Multicast scheduling for list requests. In Proc. IEEE INFOCOM’02, New York,
NY, June 2002.

T. Imielinski and S. Viswanathan. Adaptive wireless information systems. In Proceedings of the
Special Interest Group in DataBase Systems (SIGDBS) Conference, pages 19-41, Tokyo,
Japan, October 1994.

T. Imielinski, S. Viswanathan, and B. R. Badrinath. Data on air - organization and access.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 9(3):353-372, May-
June 1997.

K. C. K. Lee, H. V. Leong, and A. Si. A semantic broadcast scheme for a mobile environment
based on dynamic chunking. In Proceedings of the 20th IEEE International Conference
on Distributed Computing Systems (ICDCS’2000), pages 522-529, Taipei, Taiwan, April
2000.

W.-C. Lee, Q. L. Hu, and D. L. Lee. A study of channel allocation methods for data dissemi-

Broadcast Scheduling Algorithms for Wireless Data Dissemination 19

nation in mobile computing environments. ACM/Baltzer Journal of Mobile Networks and
Applications (MONET), 4(2):117-129, 1999.

[24] W.-C. Lee and D. L. Lee. Using signature techniques for information filtering in wireless and
mobile environments. Journal of Distributed and Parallel Databases (DPDB), 4(3):205—
227, July 1996.

[25] C. W. Lin and D. L. Lee. Adaptive data delivery in wireless communication environments. In
Proceedings of the 20th IEEE International Conference on Distributed Computing Systems
(ICDCS’2000), pages 444-452, Taipei, Taiwan, April 2000.

[26] S.-C. Lo and A. L. P. Chen. Optimal index and data allocation in multiple broadcast chan-
nels. In Proceedings of the 16th IEEE International Conference on Data Engineering
(ICDE’2000), pages 293-302, San Diego, CA, USA, February 2000.

[27] W.-C. Peng and M.-S. Chen. Dynamic generation of data broadcasting programs for a broad-
cast disk array in a mobile computing environment. In Proceedings of the 9th ACM In-
ternational Conference on Information and Knowledge Management (CIKM’2000), pages
38-45, McLean, VA, USA, November 2000.

[28] E. Pitoura and P. K. Chrysanthis. Exploiting versions for handling updates in broadcast disks.
In Proceedings of the 25th International Conference on Very Large Data Bases (VLDB’99),
pages 114-125, Edinburgh, Scotland, UK, September 1999.

[29] K. Prabhakara, K. A. Hua, and J. Oh. Multi-level multi-channel air cache designs for broad-
casting in a mobile environment. In Proceedings of the 16th IEEE International Conference
on Data Engineering (ICDE’2000), pages 167-176, San Diego, CA, USA, February 2000.

. Shanmugasundaram, A. Nithrakashyap, R. M. Sivasankaran, and K. Ramamritham. Effi-
cient concurrency control for broadcast environments. In Proceedings of ACM SIGMOD
International Conference on Management of Data, pages 85-96, Philadelphia, PA, USA,
June 1999.

[31] K. Stathatos, N. Roussopoulos, and J. S. Baras. Adaptive data broadcast in hybrid networks. In

Proceedings of the 23rd International Conference on Very Large Data Bases (VLDB’97),
pages 326-335, Athens, Greece, August 1997.

[32] C. J. Su and L. Tassiulas. Broadcast scheduling for the distribution of information items with
unequal length. In Proceedings of the 31st Conference on Information Science and Systems
(CISS’97), March 1997.

[33] C. J. Su, L. Tassiulas, and V. J. Tsotras. Broadcast scheduling for information distribution.
ACM/Baltzer Journal of Wireless Networks (WINET), 5(2):137-147, 1999.

[34] K. L. Tan and J. X. Yu. On selective tuning in unreliable wireless channels. Journal of Data
and Knowledge Engineering (DKE), 28(2):209-231, November 1998.

[35] N. H. Vaidya and S. Hameed. Scheduling data broadcast in asymmetric communication envi-
ronments. ACM/Baltzer Journal of Wireless Networks (WINET), 5(3):171-182, 1999.

[36] J. W. Wong. Broadcast delivery. Proceedings of the IEEE, 76(12):1566—1577, December 1988.

. W. Wong and H. D. Dykeman. Architecture and performance of large scale information
delivery networks. In Proceedings of the 12th International Teletraffic Congress, pages
440-446, Torino, Italy, June 1988.

. Xu, Q. L. Hu, W.-C. Lee, and D. L. Lee. Performance evaluation of an optimal cache
replacement policy for wireless data dissemination. IEEE Transactions on Knowledge and
Data Engineering (TKDE), 16(1): 125-139, Jan. 2004.

. Xu, W.-C. Lee, and X. Tang. Exponential index: A parameterized distributed indexing
scheme for data on air. In Proceedings of the 2nd ACM SIGMOBILE/USENIX Int. Conf.
on Mobile Systems, Applications, and Services (MobiSys’04), Boston, MA, June 2004.

[40] J. Xu, B. Li, and D. Lee. On bandwidth allocation for data dissemination in cellular mobile
networks. ACM/Kluwer Journal of Wireless Networks (WINET), 9(2): 103-116, March
2003.

1

(30]

o
=
L5

"o
)
—~

"
<
1

[41] J. Xu, J. Liu, B. Li, and X. Jia. Caching and Prefetching for Web Content Distribution.
IEEE Computing in Science and Engineering (CiSE), Special Issue on Web Engineering,
to appear, 2004.

[42] J. Xu, X. Tang, and D. L. Lee. Performance analysis of location-dependent cache invalidation

schemes for mobile environments. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 15(2): 474-488, March/April 2003.

[43] J. Xu, X. Tang, and W.-C. Lee. Time-critical on-demand broadcast: Algorithms,
analysis, and performance evaluation. Technical Report COMP-03-015, Depart-
ment of Computer Science, Hong Kong Baptist Univ., June 2003. Available at
http://www.comp.hkbu.edu.hk/tech-report/.

. Xu, Y. Zhu, J. Xu, B. Li, and L. Ni. A cooperative caching algorithm for multi-cell data
access. In Proceedings of IEEE International Conference on Communications (ICC 04),

=
L=
—

20 J. Xu and J. Liu

Paris, France, June 2004.

[45] G. K. Zipf. Human Behaviour and the Principle of Least Effort. Addison-Wesley, MA, USA,
1949.

[46] DirectBand Network. Microsoft Smart Personal Objects Technology (SPOT). [Online]. Avail-
able: http://www.microsoft.com/resources/spot/.

[47] StarBand. [Online]. Available: http://www.starband.com/.

[48] Hughes Network Systems. DIRECWAY homepage. [Online]. Available:
http://www.direcway.com/.
[49] WorldCup98 web site access logs, 1998. [Online]. Available:

http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

