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ABSTRACT

Data scientists often spend more than 80% of their time on data
preparation. Data enrichment, the act of extending a local database
with new attributes from external data sources, is among the most
time-consuming tasks. Existing data enrichment works are resource
intensive: data-intensive by relying on web tables or knowledge
bases, monetarily-intensive by purchasing entire datasets, or time-
intensive by fully crawling a web-based data source. In this work,
we explore a more targeted alternative that uses resources (in terms
of web API calls) proportional to the size of the local database of
interest. We build Deeper, a data enrichment system powered by
deep web. The goal of Deeper is to help data scientists to link a
local database to a hidden database so that they can easily enrich
the local database with the attributes from the hidden database. We
find that a challenging problem is how to crawl a hidden database.
This is different from a typical deep web crawling problem, whose
goal is to crawl the entire hidden database rather than only the
content relating to the data enrichment task. We demonstrate the
limitations of straightforward solutions, and propose an effective
new crawling strategy. We also present the Deeper system archi-
tecture and discuss how to implement each component. During
the demo, we will use Deeper to enrich a publication database,
and aim to show that (1) Deeper is an end-to-end data enrichment
solution, and (2) the proposed crawling strategy is superior to the
straightforward ones.

1 INTRODUCTION

Data enrichment (a.k.a. entity augmentation) is defined as enrich-
ing an entity table with new attributes extracted from external data
resources. It is a crucial step in the data-science life-cycle because
adding new attributes to the data can uncover new insights, and
provide rich and highly predictive features, which enable data sci-
entists to answer more interesting questions. As a simple example
in entity resolution, the ability to enrich restaurant names with
address, latitude, longitude, owner, and other attributes greatly im-
proves the quality of the resolution process. Similarly, companies
that develop prediction models routinely crawl web APIs and web-
sites to generate additional features. For instance, a lead scoring
company (anonymized) helps sales people rank potential clients
to call based on their likelihood to generate a sale—this company
crawls web APIs to augment the list of clients with information
about the client, the client’s company, their industry, and other pre-
dictive metadata. This is a process that nearly every data journalist,
data science student, and practitioner has experience in the process
of analysis and model development [1].

The need for Deeper. Despite the importance of this problem,
the tools to help an analyst make enrichment decisions are still
evolving. One approach is to simply purchase entire datasets or
data streams from a company or data market [4]. However, the

Restaurant Address City Category

Boiling Point 4148	Main	St Vancouver Hot Pot

Flamingo	Chinese	
Restaurant

1652	SE	Marine	
Drive Vancouver Dim Sum

Sun	Sui	Wah
Restaurant

3888	Main	
Street Vancouver Seafood, Dim Sum

Keyw
ord-Search

Interface

From Local DB From Hidden DB

Figure 1: Enrich a local restaurant database with the cate-

gory attribute extracted from Yelp.

analyst must be confident that the data will improve the model or
application enough to justify the purchase cost. Although some
data markets propose to price on a per-query [7, 9] or per-API call
basis, how can an analyst quickly and cheaply decide which API
calls to make in order make a purchasing decision?

Another approach is to use an existing data enrichment system [6,
11–13]. However, they focus on leveraging large existing corpuses,
such as Web Tables and Knowledge Bases, that the analyst may
not have access to, or they may not have the data that the analyst
needs (e.g., Yelp ratings, Google Scholar citations).

A third approach, and the one we take, is to leverage the Deep
Web. The Deep Web (or Hidden Database) is a database that can
only be accessed through a restrictive query interface (e.g., key-
word search, or form-like interface). There is a great opportunity to
leverage deep web for data enrichment. First, many deep websites
(e.g., Yelp, IMDB) contain rich and high-quality information about a
large collection of entities. Second, they often contain some unique
information about entities (e.g., Yelp ratings, Google Scholar cita-
tions) which cannot be found from anywhere else. Third, many of
them provide Web Service APIs to facilitate data access. Although
leveraging the deep web is promising, current work is primarily
focused on techniques to fully crawl a given hidden database, by
comprehensively filling in input forms or API elements.

The above three approaches have a key aspect in common: they
require large amount of resources, either existing resources in the
form of web tables, monetary resources to purchase full datasets,
or time resources to fully crawl the deep web. The goal of Deeper
is to develop a targeted enrichment system to quickly enrich the
analyst’s existing dataset sufficiently to build their application or
decide where to commit the above resources. In the long term,
Deeper should enable data scientists to enrich local data using any
given hidden database in the Web and complete the data-enrichment
task within minutes.

In this paper, we present our solution to fulfill part of the vision,
by focusing on hidden databases behind keyword search APIs. That
is, a hidden database takes as input a keyword-search query (e.g.,
“Thai Restaurant”) and returns the top-k results that match the
keywords based on an unknown ranking function. Even with the
assumption, the system is already challenging to build.



Deep Web Crawling (Section 2). Deep web crawling is the main
technical challenge. Since a hidden database can be accessed through
a keyword-search API, we need to determine which queries should
be issued to the hidden database in order to crawl the related data.
Note that this is different from existing works, whose objective is
to crawl the entire hidden database. For example, suppose we want
to enrich a restaurant table of 10 records. There is no need to crawl
the entire Yelp but only the records that can match the 10 records.
We formalize the problem and discuss the limitations of straight-
forward solutions. We propose SmartCrawl, a novel deep web
crawling approach to overcome the limitations. The experimental
results [3] show that SmartCrawl can save the number of queries
by up to 10× compared to the straightforward solutions.
End-to-End System (Section 3). Deeper is an end-to-end data
enrichment system. On one end, a user uploads an entity table and
selects a keyword-search API; on the other end, the user gets the en-
riched entity table. To enable the end-to-end experience, we need to
develop some other system components, such as schema matching
and entity resolution. Schema matching matches the (inconsistent)
schemas between a local database and a hidden database; entity
resolution finds matching record pairs between a local database
and the crawled part of a hidden database. We discuss how each
component is implemented as well as how to put them together.

We have built the Deeper system1 and made a demo video2. The
system was used in a data science class at Simon Fraser University
and helped the students to reduce the time spent on data enrich-
ment from hours to minutes. In our demonstration, we will let
the participants to test all the functionalities of Deeper within a
web application. The users can upload a dataset or use our exam-
ple data, and then perform data enrichment using one or multiple
deep web sources. We will show that the underlying algorithm is
not only cost-efficient but also robust to data errors. Our system
now supports integration from three APIs, namely DBLP, Yelp, and
AMiner, and it can be easily extended to other hidden databases
with keyword search supported.

2 LOCAL-TABLE-AWARE DEEP WEB

CRAWLING

In this section, we present our solution to the local-table-aware deep
web crawling problem.
ProblemDefinition.Consider a local databaseD with |D| records
and a hidden databaseH with |H | (unknown) records. Each record
describes a real-world entity. We call each d ∈ D a local record and
each h ∈ H a hidden record. Without loss of generality, we model a
local database and a hidden database as two relational tables.

Local records can be accessed freely; hidden records can be ac-
cessed by issuing queries through a keyword-search interface. Let q
denote a keyword-search query, andq(H)k denote the top-k hidden
records that match the query. We say a local record d is covered by
a query q if and only if there exists h ∈ q(H)k such that d and h
refer to the same real-world entity.

Definition 2.1 (Local-table-aware deep web crawling). Given a
budget b, a local database D, and a hidden database H , the goal
1http://deeper.sfucloud.ca/
2http://tiny.cc/deeper-video

of local-table-aware deep web crawling is to find a set of b queries
such that they can cover as many local records in D as possible.

NaiveCrawl. A naive approach is to enumerate each record inD
and then generate a query to cover it. For example, a query can be
a concatenation of restaurant name and address attributes. In fact,
OpenRefine (a state-of-the-art data wrangling tool) has been using
this approach to crawl data from web services [2]. However, this
approach has two drawbacks. First, it suffers from high query cost
because it needs to issue one query for every record. For example,
suppose |D| = 1, 000, 000. NaiveCrawl has to issue one million
queries to the hidden database. If one wants to enrich the data using
the Google Map API (2500 free requests per day), she will spend up
to 1,000,000

2500 = 400 days to complete the job. Second, NaiveCrawl is
not robust to data errors. Each query issued by NaiveCrawl tends
to be very long because it aims to retrieve a specific hidden record.
A long query is more likely to be affected by data errors than a
short query. If a query contains some errors, it may not be able to
retrieve the data that we are looking for. For example, suppose “Sun
Sui Wah Restaurant” is falsely written as “Sun Sui Wah Restaurant
12345”. If the issued query is “Sun Sui Wah Restaurant 12345”, a
hidden database may not return the matching restaurant to us.
SmartCrawl.To overcome the drawbacks, we propose SmartCrawl,
a new local-table-aware deep web crawling strategy. It has two
stages: query pool generation and query selection.
• In the first stage, SmartCrawl initializes a query pool by extract-
ing the queries from D. The query pool does not only contain
specific queries (like what NaiveCrawl has) but also general
queries (e.g., “Noodle”) that can cover multiple local records at a
time.

• In the second stage, SmartCrawl first selects the query q∗ with
the largest benefit from the query pool, issues q∗ to the hidden
database, removes the covered records from D, and updates the
query pool. This iterative process will repeat until the budget is
exhausted or the local database is fully covered.
Compared with NaiveCrawl, SmartCrawl generates both spe-

cific and general queries. A hidden database typically sets the top-k
restriction with k in the range between 10 to 1000 (e.g., k = 100 for
Google Search API, k = 1000 for DBLP Publication API). Suppose
k = 100. At best, SmartCrawl can use a single query to cover 100
records, which is 100 times better than NaiveCrawl. Furthermore,
since general queries tend to contain fewer keywords, it is less
sensitive to data errors.
Benefit Estimation. The main challenge is how to estimate the
benefit of issuing a query before issuing it. This is a “chicken-
and-egg” problem. We solve the problem by estimating the query
benefit based on a hidden database sample. There is a large body
of work on deep web sampling [5, 10, 14], aiming to randomly
choose a set of records from a hidden database. Recently, Zhang
et al. [14] propose efficient techniques that can create an unbiased
sample of a hidden database as well as an unbiased estimate of the
sampling ratio by issuing keyword-search queries. SmartCrawl
applies these techniques to create a hidden database sample offline.
Note that the sample only needs to be created once and can be
reused by any user whowants to match their local database with the
hidden database.We propose a number of effective estimators, prove
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Figure 2: The Deeper System Architecture.

some good theoretical properties, and validate their effectiveness
experimentally [3].

3 THE DEEPER SYSTEM

Figure 2 shows the Deeper system architecture. The system is di-
vided into two parts: a front-end user interface, which handles the
interaction with end users, and a back-end infrastructure, which
handles the interaction with hidden databases.

3.1 Front-End User Interactions

The front end of Deeper is a web-based user interface (see Figure 3).
It allows users to upload their data, do schema matching, configure
parameters for deep web crawling, refine the output of an entity
resolution algorithm, and download the enriched table.

In the beginning, a user uploads a local CSV file and selects a
hidden database API (e.g., DBLP Publication API). The system first
parses the file into a table.
Schema Matching. The local table and the hidden database may
have some attributes matched but with different representations.
The user needs to perform schema matching to link the correspond-
ing attributes between them. Figure 4 illustrates the user interface of
our schema matching component. The top one shows the attributes
in the local table and the bottom one gives the schema of the hidden
database. By clicking the attributes in order, the user can build the
correspondences between attributes, where the correspondences
are indicated by the numbers behind the attribute names.
Parameter Setting. The user needs to specify a number of parame-
ters for the deep web crawling component, including query budget,
the number of threads, and the number of queries issued per second.
After that, the user clicks the “Try it now” button, and a progress
circle shows the running time and how much work are done cur-
rently. The back end generates queries from the table, issues queries,
and parses the returned results. Detailed implementation will be
presented in Section 3.2.
Result Validation. Once a set of records are crawled, we link them
to the local table. However, entity resolution (ER) is a challenging
problem. It is hard to develop a perfect machine-only ER approach.

Figure 3: DeeperWeb-based User Interface.

Therefore, we allow the user to validate the final data-enrichment
result. Figure 5 shows an example. Each row represents an enriched
record, where ID, TITLE, and AUTHOR come from the local table,
and INFO.TITLE, INFO.AUTHORS.AUTHOR.*, INFO.VENUE, and
INFO.YEAR are from DBLP. We highlight the enriched record (i.e.,
the 3rd row) that the system is not certain about. The user can
decide whether to keep it or not.

Once the user is satisfied with the enriched table, she can down-
load it as an CSV file.

3.2 Back-End Implementations

The back end is responsible for crawling data from a hidden data-
base, and performing ER between local data and crawled data.
Query Pool Generation. Once a local table is uploaded to the
server, we first generate a query pool for the table. The query
pool consists of general queries and specific queries. For general
queries, we use the same set of queries as NaiveCrawl. For specific
queries, we use the frequent pattern mining algorithm [8] to extract
a collection of frequent keyword sets (e.g., “memory” and “data
analytics”).
Query Selection. Query selection is an iterative process. We pro-
pose a number of optimization techniques to speed up this pro-
cess [3]. For example, to compute query benefit, we need to know
how many records in the local table contain a query. A naive way
is to scan the entire local table and then check whether each record
contains the query or not. Instead, we build an inverted index
over the local table. The inverted index is a hash map which maps
each keyword to an inverted list—the list of records containing the
keyword. Given a query with a set of keywords, we retrieve the
inverted list of each keyword, and then compute the intersection
of the inverted lists, without the need to scan the whole table.
Entity Resolution. Once data is crawled, for each record in the
local table, we need to check whether there is a matching one in the
crawled data. We implemented a similarity-based ER approach. The
approach computes the similarity between two records based on
a similarity function (e.g., Jaccard, Edit Distance). If the similarity
value is larger than a threshold (e.g., 0.5), they are considered as
matching; otherwise, non-matching. It is worth noting that ER is an
independent component in our system. If one wants to use another
ER approach (e.g., learning-based), she just needs to implement
it and plug it into our system. In the future, we plan to add more
built-in ER approaches to Deeper.
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Figure 4: Schema Matching.

Figure 5: Result Validation.

Python Library. We have implemented the back end of Deeper,
and open-sourced the Python library for developers3. The system is
easy to extend. Developers can easily extend the library by adding
new Web APIs or customize their own ER algorithms.

4 DEMONSTRATION PROPOSAL

We aim to demonstrate that (1) Deeper is an end-to-end data enrich-
ment solution, and (2) SmartCrawl is superior to NaiveCrawl.
Imagine Bob is a PhD student. He collects a list of interesting DB pa-
pers, but each paper has only title and author attributes. He wants
to add venue, year, and citation# attributes to the data.
End-to-End Experience. He first loads the data to the Deeper
system and selects the DBLP publication API (see Figure 3). Then,
he clicks the “Try it now” button. The system will pop up a window
and ask him to do schema matching (see Figure 4). After that, the
system will send the data along with the schema-matching result
to the back end, and start to enrich the data. Once this process is
finished, the system will show an enriched table (see Figure 5). Bob
can validate the result and check whether there are some mistakes.
Since the DBLP API does not have the citation# attribute, Bob has
to get it from another API (e.g., the AMiner API). To do so, Bob just
needs to select the AMiner API and repeats the above process.
Superiority of SmartCrawl. As discussed in Section 2,
SmartCrawl is superior to NaiveCrawl for two reasons: i) it
can save a lot of queries, ii) it is more robust to data errors. To
demonstrate these points, Deeper provides a functionality called
error ingestion. Bob can use it to add errors to his data. When we say
5% errors are ingested, it means that we randomly select x% of the
records, and for each record, we either add a random word or delete
an existing word. Bob can run SmartCrawl and NaiveCrawl at
the same time, and compare their performance.

We constructed a local database of 10,000 papers from major DB
venues, and added 5% and 50% data errors to it, respectively. We
varied the number of queries issued, and compared the number of
enriched records using SmartCrawl and NaiveCrawl. Figure 6(a)
3https://pypi.python.org/pypi/deeperlib
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(a) error% = 5% (b) error% = 50%
Figure 6: Comparisons of SmartCrawl and NaiveCrawl.

and (b) show the results. First, we can see that SmartCrawl saved a
lot of queries. For example, in Figure 6(a), SmartCrawl can enrich
2000 records by issuing only 250 queries but NaiveCrawl needs to
issue 2000 queries, which is about 10× more expensive. Second, we
can see that SmartCrawl is more robust to data errors. For example,
in the case of error% = 5%, SmartCrawl and NaiveCrawl can
use 2000 queries to enrich 8775 and 1914 local records, respectively.
When error% was increased to 50%, SmartCrawl can still enrich
8463 local records (only missing 3.5% compared to the previous
case) while NaiveCrawl can only enrich 1031 local records (46%
less than the previous case).

5 CONCLUDING REMARKS

This paper described a demonstration of Deeper, a system to incre-
mentally and quickly enrich local databases by leveraging deep web
APIs—specifically keyword-based APIs in the current system. Our
intention is to use this both as a tool for data science practitioners
to improve models and make decisions about where to commit
data enrichment resources, and as part of data science curricula by
making it easy to leverage deep web APIs as part of homework and
projects. In this latter setting, we have tested it in an SFU data sci-
ence class, and helped the students to save hours of time to enrich
their local databases.
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