Reprowd: Crowdsourced Data
Processing Made Reproducible

Ruochen Jiang, Jianan Wang
Simon Fraser University
Burnaby, Vancouver, Canada
{ruochenj, jnwang} @sfu.ca

Introduction

Crowdsourcing is a multidisciplinary research area in-
cluding disciplines like artificial intelligence, human-
computer interaction, database, and social science. One of
the main objectives of AAAI HCOMP conferences is to
bring together researchers from different fields and provide
them opportunities to exchange ideas and share new research
results. To facilitate cooperation across disciplines, repro-
ducibility is a crucial factor, but unfortunately it has not got-
ten enough attention in the HCOMP community.

Imagine a researcher Bob did a crowdsourcing experi-
ment, and another researcher Ally would like to reproduce
the experiment (Note that in this paper, we trust the crowd-
sourced answers collected by Bob, which is a weaker claim
of reproducibility than (Paritosh 2012).). This reproducibil-
ity process could take a lot of time for both Bob and Ally.
From the Bob’s perspective, he has to spend additional time
in modifying the code since the code written for doing the
experiment is different from that used for reproducing the
experiment. For example, the former requires to collect an-
swers from crowd workers, but the latter just reuses the
cached crowdsourced answers. From the Ally’s perspective,
once she receives the modified code and the crowdsourced
answers, she might find it hard to examine the experimental
result since the code may not be easy to extend or the crowd-
sourced answers may not contain enough lineage informa-
tion (e.g., when were the tasks published? which workers
did the tasks?).

These issues will discourage researchers from sharing
experimental results or analyzing others’ results to derive
new insights, resulting in a significant negative impact on
the HCOMP community. While some recently developed
tools (Little et al. 2010; (Chirigati et al. 2016} Sheshadri and
Lease 2013) can be used to mitigate the impact of these is-
sues, they do not fully meet Bob and Ally’s requirements.
Reprozip (Chirigati et al. 2016) is tool for automatically
packing an experiment along with the entire programming
environment (e.g., dependent libraries or packages). It saves
the time for deploying an experiment but not the time that
Bob spends in modifying the code or Alley spends in exam-
ining the code. Turkit (Little et al. 2010) proposes a crash-

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and-rerun programming model. This programming model
can help Bob to solve his issue, but add extra burden to
Ally. Since Turkit caches the function’s returned values into
a database in sequence, Ally has to be very careful with the
order of these function calls. If she accidentally swapped
the order of two functions or added a new function between
them, the whole experiment would break. This restriction
make it even harder for Ally to examine the Bob’s experi-
mental result.

In this paper, we present REPROWD, a system aiming
to address these issues. We identify two requirements for
making a crowdsourcing experiment easy to reproduce. 1)
Sharable. Once Bob finishes a crowdsourcing experiment,
he should be able to directly share the experiment to Ally
without any need to change the code. (2). Examinable. The
experiment should capture complete lineage information
about crowdsourced answers and allow Ally to extend the
code more easily.

Due to our database background, we restrict the RE-
PROWD’s current focus on the database field only. Most of
the crowdsourcing works in the database field are centered
around the implementations of crowdsourced data process-
ing operators (Li et al. 2016). That is, how to combine com-
puters and crowds to implement traditional database oper-
ators such as join, sort, and max. Despite the restricted fo-
cus, REPROWD could be beneficial to any research field that
needs to collect data from the crowd.

A key insight in designing REPROWD is to model a list of
steps for doing a crowdsourcing experiment as a sequence
of manipulations of a tabular dataset called CrowdData.
This idea enables us to leverage some existing techniques
that were originally developed for data management, such
as data recovery and data lineage, to address reproducibil-
ity challenges. Specifically, in order to satisfy the “sharable”
requirement, the system guarantees that any manipulation of
CrowdData is fault recovery. That is, when the program is
crashed, rerunning the program is as if it has never crashed.
Thus, at any given point, Ally can simply rerun the Bob’s
code to reproduce his experimental result. In order to satisfy
the “examinable” requirement, CrowdData not only contains
complete lineage information about crowdsourced answers
but also allows other researchers to extend the code using the
provided APIs. We find that the CrowdData abstraction is
general enough to be used in re-implementing a large num-

Applications
Image Entity
Labeling Resolution

CrowdContext

e

CrowdData

Figure 1: REPROWD Architecture

ber of crowdsourced data processing algorithms in the lit-
erature. We have implemented two crowdsourced join algo-
rithms (Wang et al. 2012} [Wang et al. 2013)) and shown that
these algorithms can inherit the sharable and examinable re-
quirements from CrowdData for free. In the future, we will
continue to add more algorithms into the system.

System Overview

Figure [T] shows the REPROWD architecture. Central to the
system is CrowdData, which serves as a bridge to con-
nect high-level crowdsourced operators (e.g., join) with
an underlying crowdsourcing platform and database. The
quality control component implements a number of widely
used techniques for improving the quality of crowdsourced
answers. All of these components are encapsulated into
CrowdContext, the main entry point for REPROWD function-
ality. We also implement a few example applications such as
image labeling and entity resolution for new users to try out
the system.

Next we use a simple example to explain how REPROWD
works. Suppose Bob wants to label three images, where the
label of an image is either “Yes” or “No”. Each image will be
assigned to three workers and then uses Majority Vote (MV)
to decide its final label. Figure [2] shows the Bob’s code for
doing this experiment. It consists of five steps:

1. Preparing input data (Line 4)

2. Choosing a web user interface (Line 5)

3. Publishing tasks to a crowdsourcing platform (Line 6)

4. Getting results from the platform (Line 7)

5. Using MV to determine the final labels (Line 8)

Each step will be mapped to a manipulation of a tabu-
lar dataset. In step 1, the system initializes a table of two
columns, where one is an id column and the other is an ob-
Jject column, and then populates the table with three rows:
(1, “imgl_url”), (2, “img2_url”), (3, “img3_url”). In step 2,
it keeps the table unchanged. In step 3, it adds a new column
task to the table, which stores the related information about
the published tasks. In step 4, it adds another new column re-
sult, storing the related information about the crowdsourced
answers. In step 5, it adds a column myv, storing the majority-
vote results. In addition, to make the data in the table fault

1 cc = CrowdContext()

2 images = ['imgl_url', 'img2_url', 'img3_url']
S

4 crowddata = cc.CrowdData(images, "image label") \
5 .set_presenter(ImageLabel()) \

6 .publish_task(n=3) \

7 .get_result() \

8 .quality control('mv')

)

10 print crowddata.data['mv']

11 #Output: ['Yes',6K 'Yes', 'No']

Figure 2: Bob’s code for doing a crowdsourcing experiment
(Label three images and use MV for quality control.). Ally
can rerun the code to reproducing the experimental result.

1 cc = CrowdContext()

2 images = ['imgl url', 'img2 url', 'img3 url']

3

4 crowddata = cc.CrowdData(images, "image label") \
—5—— .append('img4_url') \
.set_presenter(ImageLabel()) \
.publish_task(n=3) \
.get_result() \

9 .quality_control('mv')
10
11 print crowddata.cols
12 #Output: ['id', 'object', 'task', 'result', 'mv']
Lineage) | 12

Info. 14 print crowddata.data['task']
15 # Output: Information about the published tasks
16 # (e.g., task_id, task created_time)

Code _|
Extension

® o

Figure 3: Ally’s code for examining the experiment. She can
extend the code by labeling more images or check the lin-
eage information of the Bob’s experiment.

recovery, the fask and result columns will be stored persis-
tently in a database, but the other columns will not be stored
since they can be easily recovered through re-computation.

After Bob finishes the experiment, he can share the code
along with the database file to Ally. Once Ally receives
them, she can simply rerun the Bob’s code to reproduce his
experiment. Moreover, as shown in Figure[3] she can further
examine the experiment by building up a new experiment
based on the Bob’s (Line 5) or checking the lineage infor-
mation of the experiment (Lines 11-16).

Conclusion

This paper points out that reproducibility is a key factor to
facilitate research cooperation, and should get more atten-
tion in the HCOMP community. The paper presents RE-
PROWD, a system aiming to make it easy to reproduce
crowdsourced data processing research. A key innovative
aspect of the system is the CrowdData abstraction, which
maps a crowdsourcing experiment to manipulations of a tab-
ular dataset. We describe how the mappings work, and ex-
plain why this new abstraction makes crowdsourcing exper-
iments sharable and examinable. We have open sourced RE-
PROWD at http://sfu-db.github.io/reprowd/.
In the future, we will add the implementations of more
crowdsourced data processing operators into the system.

References

[Chirigati et al. 2016] Chirigati, F.; Rampin, R.; Shasha, D.;
and Freire, J. 2016. Reprozip: Computational reproducibil-

http://sfu-db.github.io/reprowd/

ity with ease. In SIGMOD, 2085-2088.

[Lietal. 2016] Li, G.; Wang, J.; Zheng, Y.; and Franklin,
M. J. 2016. Crowdsourced data management: A survey.
IEEE TKDE 28(9):2296-2319.

[Little et al. 2010] Little, G.; Chilton, L. B.; Goldman, M.;
and Miller, R. C. 2010. Turkit: human computation algo-
rithms on mechanical turk. In UIST, 57-66.

[Paritosh 2012] Paritosh, P. 2012. Human computation must
be reproducible. In CrowdSearch, 20-25.

[Sheshadri and Lease 2013] Sheshadri, A., and Lease, M.
2013. SQUARE: A benchmark for research on computing
crowd consensus. In Proceedings of the First AAAI Confer-
ence on Human Computation and Crowdsourcing, HCOMP
2013, November 7-9, 2013, Palm Springs, CA, USA.

[Wang et al. 2012] Wang, J.; Kraska, T.; Franklin, M. J.; and
Feng, J. 2012. Crowder: Crowdsourcing entity resolution.
PVLDB 5(11):1483-1494.

[Wang et al. 2013] Wang, J.; Li, G.; Kraska, T.; Franklin,
M. J.; and Feng, J. 2013. Leveraging transitive relations
for crowdsourced joins. In SIGMOD, 229-240.

	Introduction
	System Overview
	Conclusion

