Minimum Description

Length Principle:

Generators are Preferable to Closed Patterns

Jinyan Li »* HaiquanLi ! Limsoon Wong?
! Institute for Infocomm Research, Singapore
2 National University of Singapore, Singapore
* Email: jinyan@i2r.a-star.edu.sg

Abstract

The generators and the unique closed pattern of an
equivalence class of itemsets share a common set of
transactions. The generators are the minimal ones
among the equivalent itemsets, while the closed pattern
is the maximum one. As a generator is usually smaller
than the closed pattern in cardinality, by the Minimum
Description Length Principle, the generator is prefer-
able to the closed pattern in inductive inference and
classification. To efficiently discover frequent genera-
tors from a large dataset, we develop a depth-first algo-
rithm calledGr-growth. The idea is novel in contrast
to traditional breadth-first bottom-up generator-mining
algorithms. Our extensive performance study shows
that Gr-growth is significantly faster (an order or even
two orders of magnitudes when the support thresholds
are low) than the existing generator mining algorithms.
It can be also faster than the state-of-the-art frequent
closed itemset mining algorithms such as FPclose and
CLOSET+.

Introduction

A set of itemsets is said to form amquivalence
class(Bastideet al. 2000) if they occur in the same set
of transactions in a dataset. The maximum itemset (under
set inclusion) in an equivalence class is calledased pat-
tern. The minimal itemsets of an equivalence class are called
generatorgPasquieet al. 1999). An itemset that occurs in
many transactions is said to be frequent (Agrawal, Imielin-
ski, & Swami 1993). Frequent closed patterns (Pasquier
et al. 1999) can form a concise and lossless represen-
tation of frequent itemsets. Thus they have been exten-
sively studied (Pasquiest al. 1999; Zaki & Hsiao 2002;
Panet al. 2003; Wang, Han, & Pei 2003; Grahne &
Zhu 2005; Uno, Kiyomi, & Arimura 2004). On the other
hand, the minimal itemsets of an equivalence class are of-
ten shorter than the maximum one. Thus, by the Mini-
mum Description Length Principle (MDL) (Rissanen 1978;
Grunwald, Myung, & Pitt 2005), generators are preferable
to closed patterns for model selection and classification.
However, existing algorithms (Boulicaut, Bykowski, &
Rigotti 2003; Bastideet al. 2000; Luong 2002; Pasquier

Copyright © 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Jian Pei® Guozhu Dong?*
3 Simon Fraser University, Canada
4 Wright State University, USA

et al. 1999; Kryszkiewicz, Rybinski, & Gajek 2004) for
mining frequent generators are slow. All of them adopt a
breadth-first Apriori-join (level-wise bottom-up) approach
to generate candidates. Such an approach generally requires
a lot of memory, and also requires scanning the dataset many
times. We propose here a novel algorithm calBregrowth
which uses a depth-first search strategy. Our extensive per-
formance study shows th&r-growth is usually 10-100
times faster than the existing generator mining algorithms. It
is also faster than the state-of-the-art frequent closed itemset
mining algorithms such as CLOSET+ (Wang, Han, & Pei
2003) and FPclose (Grahne & Zhu 2005).

The new data structure used by Be-growth algorithm
is calledGr-tree, a classical trie structure similar to FP-tree
used in the FP-growth algorithm (Han, Pei, & Yin 2000) for
mining frequent itemsets. There are two critical differences
between the two structures: (i) The header table®f-éree
(or a conditionalGr-tree) does not contain anfyll-support
items but that of an FP-tree always contains them; (ii) the
header table of a condition&8r-tree does not contain any
frequentpseudo-key itembut that of an FP-tree always con-
tains them. Here, a pseudo-key item is an item that is not a
full-support item and whose union with the root of the tree is
not a generator either. The manipulation of the trees is also
different—the nodes in a single par-tree is examined
only linearly, but combinations of the nodes in a single path
FP-tree are exhaustively enumerated. ThGs-¢ree is very
often smaller and has less computation than an FP-tree.

We elaborate in the next few sections why MDL favors
generators, and how a depth-first search approach can pro-
duce all frequent generators from a dataset at a speed faster
than the state-of-the-art algorithms for mining closed pat-
terns.

Generators and Closed Patterns

A datasetis defined a®D = (Zp,TDBp), whereIp is a
non-empty finite set dfemsand7DBp C 277 a multiset of
transactions A subsetl C Zp is called antemset An item-
set consisting of; items is called &-itemset. Thesupport
of an itemset/ in a dataseD, denoted byupp (1), is the
number of transactions (ADBp that contain/. An itemset
I is said to befrequentin a dataseD iff supp(I) > ms
for a pre-specified thresholds For an itemsef C Zp, we
definefp(I) = {T' € TDBp | I C T}; i.e., all transac-

tions in the dataset containing itemdetHencesupp (1) =

|fp(I)]. For aset of transaction®B’ C TDBp, we define
gp(TDB') = {i € Ip | forall T € TDB',i € T}; i.e., the
set of items which are shared by all transactiongi’.

For an itemsef, clp(I) = gp(fp(I)) is called theclo-
sureof I. The closure induces amquivalence relationvp
on 27» by I ~p Iy iff ClD(Il) = CZD(IQ). Thus the
equivalence clasf|p of an itemsetl is defined as the set
{ACZp|clp(A) = clp(I)}. So, all itemsets in an equiv-

alence class are contained in some common set of transac-

tions. The one and only one maximal element in an equiva-
lence clas$l]p, namelyclp (1), is called theclosed pattern

of this equivalence class. The minimal ones are cailed
erators

Example 1 Consider the followingd’DB:

| Transaction-id] ltems |
Ty a,c,d
15 b,c,e
T3 a, b7 G 6, f
T4 b, €
T5 a,b,c e

Suppose the minimum support threshold.ig hen, there
are in total 16 frequent itemsets, including the empty et
which is trivially frequent. The frequent itemsets as well as
their set inclusion relation are shown in the following figure.
These frequent itemsets can be divided ihitequivalence

of hypothesis learned from a dataget The best hypothesis
H € H to explainD is the one which minimizes the sum
L(H,D) = L(H) + L(D|H), where

e [L(H) isthe length, in bits, of the description of hypothe-
sisH; and

e L(D|H) is the length, in bits, of the description of the
data when encoded with the help of hypothdsis

We bring this principle into the context of generators and
closed patterns in a similar way to (Gao, Li, & Vitanyi
2000), where robot arm learning and hand-written character
recognition problems are discussed. &t be an equiva-
lence class of some dataget C' the closed pattern aof'c,
andG a generator ofic. Let D = fp(C) = fp(G). Then
C andG are two hypothesis describing the d&§. ForC,
the description lengtii.(C, DS) = L(C) + L(D&|C). For
G, the description lengtth(G, DS) = L(G) + L(DS|G).
The closed patterr’ and the generatoé occur in the
same datD&. So, L(D§|C) = L(DS|G). Therefore, if
L(C) > L(G), thenL(C, DS) > L(G, DS). This is often
true because the cardinality 6fis often larger than that of
G. So, by MDL, the generatd® is preferable to the closed
patternC for describing its transaction s&t5.

This preference is particularly obvious in classification
problems. For an application where only two classes of
transactions are involved, suppose transaction®gn all
have the same class label, spgsitiveclass. Also assume
that the closed patteid hasn itemsay, as, - - -, a, (n > 2),
and the generata® has only 2 items:; andas. Then, we
can get two rules:

e One derived fronC" If a transaction containg; andas
and- - - anda,, then it is positive.

e The other derived fron@;: If a transaction containg;
andas, then it is positive.

Note that the two rules are both satisfied by all transactions
in DS but no other transactions .
The second rule should be more predictive on independent

classes, as bounded by the dash lines in this figure. In each test data than the first one, because a true test sample is more
class, the itemset at the bottom is the closed itemset, and likely to satisfy the two items; anda, than to satisfy the,

the itemsets at the top are the generators. In particular, the
itemsetabce is a closed pattern, andp(abce) consists of
two transactionsTs = {a, b, ¢, ¢, f} andT5 = {a, b, ¢, €}.
The equivalence clagabce]p is {abce, abe, abe, ace, ab,
ae}. The generators dfibce|p are ab andae. Some closed
patterns are also generators, for example, the itemset

MDL Favors Generators

The Minimum Description Length Principle (MDL) was
proposed by (Rissanen 1978), developed by (Li & Vitanyi
1997), and recently surveyed by (Grunwald, Myung, & Pitt
2005). This principle provides a generic solution to the
model selection problem. MDL has a sound statistical foun-
dation rooted in the well-known Bayesian inference and
Kolmogorov complexity.

A crude two-part version of MDL (Grunwald, Myung, &
Pitt 2005) is as follows: Let = {H;, Ho,- -, H,, } be a set

items contained il”. So, when some noise is present in the
test data, the second rule can better tolerate the noise errors
than the first rule.

Gr-growth: Mining Frequent Generators

We next present some properties of generators. Then we
introduce our depth-firsGr-growth algorithm for mining
frequent generators with the help of a new data structure
calledfrequent generator treeor frequentGr-tree in short.

A Gr-tree is a typical trie structure, storing all relevant in-
formation of a dataset for mining frequent generators.

Proposition 1 LetD = (Zp,TDBp) be a dataset. Lefp
be the set of generators. Ldtbe an itemset. TheA € Gp

iff supp(A) < supp(B) for every proper subsds of A.
Proof: We first consider the “only if” direction. Suppose
A € Gp and B is a proper subset ofl. Then we have

fp(4) C fp(B). AsA € Gp, we haveB is in a differ-
ent equivalence class from that df Thereforefp(A) C
fp(B). Sosupp(A) < supp(B).

We next prove the “if” part by contradiction. Assume
is not a generator in an equivalence class. Then there exists
an itemset?B in this equivalence class that is a proper subset
of A. So,supp(B) = supp(A). But, this is a contradiction
becauseupp(A) < supp(B) for every proper subsds of
A. S0,A must be a generator. O

Proposition 2 (Apriori property of generators) Let Gp
be the set of generators of a datagetThen for allA € Gp,
every proper subseB of A is a generator, i.e.B € Gp;
and for all X ¢ Gp, every proper superséf of X is not a
generator, i.eY ¢ Gp.
Proof: We prove by contradiction. Suppades a generator
of DandB C Ais not. Denotel’ = cip(B). Then, there
is a generatorB’ of the equivalence class @¢f such that
B’ C B. LetA = BUV suchthatBNV = . AsB’ andB
are in the same equivalence class, we hayep (B'UV) =
supp(BUV) = supp(A). That is,A has a proper subset
B’ UV with the same support as itself. Howevdr,is a
generator. By Proposition 1, all its proper subsets must have
a larger support than that ofd. This is a contradiction.
Therefore,B is a generator.

The above proof implies that for al ¢ Gp, every proper
supersel” of X is not a generator, i.eY ¢ Gp. O

Corollary 1 If afrequent 1-itemset’s support is less than the
total number of transactions of a dataset, then this 1-itemset
is a frequent generator.

The items in frequent 1-itemset generators will be referred
to as frequent key items. It is easy to see thhtllasupport
item(an item occurring in every transaction of &B) is not
a key item ofT'DB.

Frequent Gr-tree and Conditional Gr-tree

Let D = (ZIp, TDByp) be a dataset. Let a support thresh-
old ms be given. A frequenGr-tree of D, denoted by
Gr-tree|?, . is constructed by the algorithm shown in Fig-
urel.

A frequent conditionaGr-tree is constructed from eon-
ditional TDB:

Definition 1 (Conditional TDB) LetD = (Zp, TDBp) be
a dataset. Let a support threshotds be given. Lefl'ree
be a frequeniGr-tree of TDBp with respect toms. Let
ai,as, -+ 7an be items in the header table @¥ee. For q;
(i=1,---,n), we definei;'s conditional TDB, denoted by
TDB|{) ‘ms» as the set of path segments exclusively between
the root anda; for all paths inT'ree containinga;.

Each path segment is equivalent to an itemset, with sup-
port equal to that ofi; in that path. So we can say that

TDB|§;;}W is a set of transactions.

Definition 2 (Full-support items) An iteme is caIIed a
full-support item otTDB\gf;}Ls, if its support |nTDB|D s
is equal toa;'s support.

Algorithm 1 (FrequenGr-tree construction)
Input: A datasetD = (Zp, TDBp) and ams.
Output: AfrequentGr—tree|%7ms.

Method: The construction consists of two steps:

1. Collect the set of frequent key items — Cf. Corollary 1. Create a header table
to store them in a support descending orfler

Create the root of the tréE, and label it a$). For each transactidhrans

in TDBp do the following.

Remove those items froffirans that are infrequent or that are full-support
items. Sort the remaining items according to the orddr of et the resulting
list be [p| P], wherep is the first element ané is the remaining list. Call
insert_tree([p|P],T).

The functioninsert_tree([p|P], T') (Han, Pei, & Yin 2000) is performed
as follows: IfT" has a childV such thatV.item-name =p.item-name, then
incrementN'’s count by 1; else create a new nodg and let its count be 1,
its parent link be linked td@", and its node-link be linked to the nodes with
the same item-name via a node-link structurePlis nonempty, recursively
callinsert_tree(P, N).

2.

Figure 1: Steps of constructing a frequtttree.

Definition 3 (Conditional Gr-tree) Following the nota-
tions in Definition 1, we define;’s conditional frequent

Gr-tree, denoted byGr- tree\{‘“ as a tree structure sat-

D,ms"

isfying the following conditions:

1. It consists of one root labeled ag(4;}”, a set of item
prefix subtrees as the children of the root, and a header
table storing a list of items satisfying:

(@) They are frequent but not full-support items in

TDB|Y"} ; and

D,ms?
(b) They are not pseudo-key items, that is, the union of any
e from them and the root (i.e{g, a;}) is a generator of

D.
2. The fields of each node of the tree and each entry in the
header table have exactly the same meaning as a normal
Gr-tree.

Based onGr- tree|D s, for an itema; in the header

of Gr- tree|g1;m, similarly we can define:;'s conditional

TDB anda;’s conditional Gr-tree, which are denoted by
TDB|\%} and Gr-tree| %) respectively. Usually, we

D,ms D,ms
denote a conditiondl’DB asTDB|% .., and a conditional
Gr-tree asGr-tree|3, ,,, ., for some itemset. We also write
TDB|, andGr-tree|, if D andms are understood.
Determining whether the union of a frequent iterwith
the roota is a generator—as required by Definition 3—costs
most of the time in constructing the header table of the con-
ditional tree. This is also a unique feature of conditional
Gr-tree—a conditional FP-tree (Han, Pei, & Yin 2000) does
not require this. The cost of such a determination opera-
tion can be achieved in constant time by using a hash-table
consisting of generators already found. Also observe that
as many frequent items may be not in the header table,
a frequent conditionabr-tree is very often smaller than a
conditional FP-tree.

Example 2 LetD = (Zp, TDBp) be a dataset whetgp =
{a,b,c,d,e, f, g, h,i} andTDBp consists of 6 transactions

Table 1: A dataset for our running example.
Transactions Transactions after item
removal and re-ordering

{a,b,c,d,e, g} {a,b,c,d}
{a,b,c,d,e, f} {a,b,c,d}
{a,b,c,d,e, h,i} {a,b,c,d, h,i}
{a,b,d, e} {a,b,d}
{d,c,a,e, h,i} {a,c,d, h,i}
{e,c, b} {b, c}

as shown in the left column of Table 1. Here, we also set
ms = 2.

The support information of the 9 itemsdsb, b:5, ¢:5,
d:5, e:6, g:1, f:1, h:2,i:2. However, only 6 items as sorted
inthe listL = (a:5, b:5, ¢:5, d:5, h:2, i:2) are in the header
table ofGr-tree|%,ms. Iteme is not there, since it is a full-
support item. By Proposition 1 and Proposition 2, itemset
e itself and all its supersets cannot be a generator. All fre-
guent generators of this dataset can be formed using only

the items in the header table. So, we can remove unneces-

sary items from the 6 transactions. The reduced transactions
are shown in the right column of Table 1, which are then
scanned to construct the tree usiAfgorithm 1. The whole
tree, after constructing node-links from the header table to
the first node of the tree carrying the item-name, is depicted
in the following figure.

A frequent Gr—tree

head table

AR

[SENE RV RV RN RV
7

a
b)
c
d
h
i

Gr-growth: Discovering All Frequent Generators

(Ip, TDBp) and a thresholehs. Let
ay) be the list of frequent key items in

Given a dataseb =
L= <a1aa2aa3a"'7

a support descending order of this dataset. These items areble of Gr- tree|{“’“} are the listL’ =

also premsely the items in the header table of the frequent
Gr- tree|D .ms- Suppose this freque@r-tree is not a single-
path tree. Observe that, in addition to the default genefator
other frequent generators of thi® can be divided inta:
non-overlapping groups:

those containing item,,;

those containing item,,_; but nota,,;

those containing item;, but no item in{as1,- - -
and so on untik = 1.

,an};

We denote thek-th group of generators agroupy
{G | G is a generator;, € G, but no item in{axy1, akt2,
Lany€Ghfork=1,....n

Algorithm 2 (Gr-growth—Mining frequent generators)
Input: Gr—tree|%’ms constructed bylgorithm 1 from D.
Output: The complete set of frequent generators.

Method: Call Gr-growth(Gr-tree|?, null).
Gr-growth(T'ree,)
1: generate pattera with support= «.support;

2. if Tree = @ then
3 return ;
4: endif
5: if T'ree contains a single patF then
6: for each node in the pathP do
7. generate patterfie.item} U « with support= e.support;
8 end for
9: else
0 letay, az,- - -, a, beitems in the header @free in support-descending
order;
11: foreachai,ifroml,»-»,mndo
12: = {a;} U a with support= a;.support;
13: constructTDB|D ma andGr—tree\%wms;
14: call Gr-growth(Gr-tree| . 5);
15: endfor ’
16: endif

Figure 2: TheGr-Growth algorithm.

We can obtain sufﬂuent transaction information for min-
ing groupy from TDB|D Wi’s By definition, the con-

struction ofTDB|{”’“} can be derived from the frequent

D,ms

Gr—tree\%ﬁms by a traversal of they,’s node-links starting
from a;’s in the header table o@r-tree|%7ms. Then we

construct frequenGr—tree|§3f’;35. If Gr—tree\%‘ffjs is a sin-
gle path tree, then the mining gfoup;, terminates; and the

generators aréay} in addition to those that are union of
{ar.} with every item in the header table G‘r—tree|{‘”’}

D,ms"
If Gr-tree|g‘,’;‘gS is empty, theryroup, = {{ax}}; and the

mining also terminates. Otherwise, Gr-tree|§,‘f’;§s is a
multiple-branch tree, then we do a recursive repartition by

dividing group;, into subsets according to the items stored
in the header table cﬁBr-tree|{“k} The details of this re-

D,ms"

cursion are as follows. Suppose the items in the header ta-

D,ms <a17a27a37"'7a%>
Then, in addition to the generatdu;, }, we divide groupy,
into n’ subsets: those containing itetf),; those containing
itema,_, but notal,; ...; those containing item/ but
none in{aj,,---,a,, }; and so on untif = 1.

Similarly, we can deal with other groups of generators.
The whole recursive process eventually leads to a non-
overlapping partition of all the generators—some divisions
contain only one pattern each, and the other divisions each
corresponds to a single-path conditio@attree. The algo-
rithm is shown in Figure 2.

We define an enumeration ordering on the nodes of
Gr-tree to prove the soundness and the completeness of
Gr-growth.

Definition 4 (Set-enumeration property) Let 7' be the
Gr-tree constructed from a datas@ with respect to a sup-

port thresholdms. Let the header items be), a4, ..., a,
in descending order of support. For any pdthformed by a
combination ofig, a1, ...,an, letkp(P) =Y, . p 2" For
any two pathsP and @ in the Gr-tree, we write P <" @
if kp(Q) < kp(P). Note thatP C @ implies@ <*? P.

The recursion irGr-growth is arranged to produce gen-
erators in the reverse of the set-enumeration order. That is,
for generatorsy and 3, Gr-growth producess after « iff
8 <"P . This gives an important optimization for line 13.

Recall that in constructing the conditior@l—tree@’ms, we
are only allowed to put those itemasinto the header table
of Gr-tree\%mm, provided{e} U 3 is a frequent generator.

To check whethefe} U 3 is a generator, we need to check

if each of its immediate subset$ is a generator. Since
({eyup) <Fr g, 3" is produced beforée} U 5. This way,

we can store @' that is a generator into a hash table. Then
when it comes to checking whether the immediate subsets
of {e} U [is a generator, we can easily look that up from
the hash table.

Theorem 1 (Correctness of Gr-growth) Gr-growth s
sound and complete. That is, given a datafetand a
support thresholdns, it produces all generators and only
the generators oD with respect tons.

Limited by space, the proof of this theorem is omitted.

We use the frequertBr-tree|y in Example 2 to demon-
strate howGr-growth proceeds, where the sorted list of the
frequent key itemd. = (a5, b5, ¢:5,d:5,h:2,i:2). The
Gr-growth algorithm starts with the first key iteat5 after
outputting the generatd, the root-node o6r-tree|;. Gen-
erators containing but notb, ¢, d, h or ¢ are very limited.
They areq : 5 only. This is becaus&DB|,.5 is empty.

ThenGr-growth moves to deal with the second key item
b:5. That is to mine generators containibdput note, d, h
ori. The construction of DB|.5 is easy; itis{{a : 4}, 0}.
Then we construdBr-tree|,.5. At this time, we get genera-
tor b:5, the root node of the conditional tree. &s-tree|;.s
is a single path tree, we can get another genetatdr for
this generator group by concatenatintp a:4.

ThenGr-growth moves to handle the third key iteab.

For mining generators containingbut notd, h or i, suf-
ficient transaction information for this subset of generators
come from three path segments@ftree: (a:5,b:4), (a:5),

and (b:1). ThereforeTDB|.5 is {ab:3, al, b: 1}. The
support information of the items iDB]..; are: a:4 and

b:4. Then the list of frequent items in the header table
of Gr-tree|.5 is (a:4,b:4). At this moment, we get the
first generatoe:5 for this generator group. AGr-tree|..s

is not a single path tree, we apply the same divide-and-
conquer searching strategy again to find two subsets of fre-
quent generators afDB)|..5: those containing but notb,

and those containing. The former consists of onlya:4

as Gr-tree|..5 ..« is an empty tree. The latter consists of
cb:4 andcba:3. Similarly, Gr-growth handles the remaining
three itemsi:5, h:2, andi:2 in the header table to finish the
mining.

In summary, all frequent generators for the dataset in Ta-
ble 1, in the order of the output bgr-growth, are(:6, a:5,

b:5, ba:4 ¢5, ca:4, cb:4, cba:3, d:5, db:4, dc:4, deb:3, h:2,
andi:2.

Performance Study

In this section, we report the performance@tgrowth in
comparison to the performance of existing generator min-
ing algorithms and two closed pattern mining algorithms
CLOSET+ (Wang, Han, & Pei 2003) and FPclose (Grahne
& Zhu 2005). The experiments are conducted on four bench-
mark datasets from the Frequent Itemset Mining Imple-
mentations Repositorytp://fimi.cs.helsinki.

fif). The four datasets are: Mushroom (8124 transac-
tions and 119 items), Connect-4 (67557 transactions and
129 items), Chess (3196 transactions and 75 items), and
T40110D100K (100000 transactions and 942 items).

The implementation ofr-growth is based on the source
codes available fromhttp://www.cs.concordia.
ca/db/dbdm/dm.htmi , written in C++ and compiled
by Visual C++ (v6.0) and executed on a PC with a Pen-
tium(R) 4 CPU, 2.4GHz, and 512MB of RAM. The ex-
ecutable code of CLOSET+ and FPclose are from their
authors. To implement the breadth-first search strategy
adopted by all existing algorithms for mining frequent gen-
erators, we used the source codes for the implementation of
Apriori by Borgelt (2003).

The performance results are depicted in Figure 3. We can
see thatGr-growth is consistently faster than the traditional
generator mining algorithm. For some datasets, especially
when the minimum support threshold is low, the speed-up
by Gr-growth is at least an order of magnitude or even 2 or-
ders sometimes. For example, in the casewef= 20% on
the connect-4 dataset, the speed-up is around 190.0 times.
Other similar cases can be also observed from the connect-4
and chess datasets. All these results clearly indicate that our
depth-first searching strategy is indeed efficient for mining
frequent generators with significant speed-up over the tradi-
tional algorithms.

Gr-growth is usually 2-4 times faster than CLOSET+;
the speed-up can reach up to 10 times for cases such as
ms = 30% on chess anéhs = 0.5% on T40110D100K.
Gr-growth is also faster than FPclose in general, but the
speed-up is sometimes significant, sometimes slight, and
sometimes the two algorithms are comparable. The reason
that these two closed pattern mining algorithms are slower
than Gr-growth is mainly because they use an additional
tree structure to store candidate itemsets recommended by
the FP-tree, and then to filter out those candidates that are
not closed patterngsr-growth does not require such an ex-
tra, large, filtering tree structure.

The length difference between the closed pattern and the
shortest generator of an equivalence class is interesting. For
the mushroom dataset at the minimum support level of 20%,
we ranked the top 100 equivalence classes in terms of the
length difference. The difference of the top-ranked equiva-
lence class is 13 where the length of the closed pattern is 14,
and that of the shortest generator is 1. There are many other
similar equivalence classes. Obviously, by MDL, those gen-
erators are much more preferred than the closed patterns.

(a) On mushroom dataset (b) On connect-4 dataset

10000

Gr-growth ——
breadth-first ---><---
FPclose
CLOSET+ -{z}

T T T
Gr-growth ——
breadth-first ---3¢---
7+ FPclose -k~
CLOSET+ -

1000 |

time (s)
time (s)
2
8
T

/X/
1l
time (s)

1
20 25 30 40 50 60
minimum support threshold (%)

0
0.0625 0.125 0.25 0.5 1 2
minimum support threshold (%)

(c) On chess dataset (d) On T40110D100K dataset

10000

T
Gr-growth ——
breadth-first ---><---
FPclose ----K---
CLOSET+ -f}

Gr-growth —+—
breadth-first -—->¢--—
FPclose
CLOSET+ - x|

1000
K

time (s)

P
8 1216

L L
0.5 1 4
minimum support threshold (%)

S S
30 40 50 60 70 80
minimum support threshold (%)

Figure 3: For mining frequent generators, d@bir-growth algorithm is significantly faster than the traditional breadth-first
search strategy on the four benchmark datagatgrowth is also faster than closed pattern mining algorithms.

Conclusions

We have proposed a new algorith®r-growth for min-

ing frequent generators from a dataset. The success of
Gr-growth is mainly attributed to the depth-first search strat-
egy and the compact trie structue-tree. With these two

ideas, we have accelerated the speed of mining generators

significantly, by at least an order of magnitude when the
support threshold is low. Its speed is also faster than that of
closed pattern mining algorithms FPclose and CLOSET+.

Based on MDL, we have demonstrated that generators
are preferable to closed patterns in particular in rule induc-
tion and classification. Now that mining generators is faster
than mining closed patterns, as a future work, we will study
how generators are used for classification problems. We will
also study in what situations using generators is significantly
more reliable than using closed patterns in solving real-life
prediction problems.

References
Agrawal, R.; Imielinski, T.; and Swami, A. 1993. Mining

association rules between sets of items in large databases.

In Proceedings of 1993 ACM-SIGMOD International Con-
ference on Management of Data07-216. Washington,
D.C.. ACM Press.

Bastide, Y.; Taouil, R.; Pasquier, N.; Stumme, G.; and
Lakhal, L. 2000. Mining frequent patterns with counting
inference.SIGKDD Exploration®2(2):66—75.

Borgelt, C. 2003. Efficient implementation of apriori and
eclat. InProceedings of FIMI'03: Workshop on Frequent
ltemset Mining Implementations

Boulicaut, J.-F.; Bykowski, A.; and Rigotti, C. 2003. Free-
sets: A condensed representation of boolean data for the
approximation of frequency queriesData Mining and
Knowledge Discovery(1):5-22.

Gao, Q.; Li, M.; and Vitanyi, P. 2000. Applying mdl
to learning best model granularityArtificial Intelligence
121:1-29.

Grahne, G., and Zhu, J. 2005. Fast algorithms for fre-

guent itemset mining using fp-tred&EE Transactions on
Knowledge and Data Engineeririgy (10):1347-1362.

Grunwald, P.; Myung, 1. J.; and Pitt, M. 200%&dvances
in Minimum Description Length: Theory and Applications
MIT Press.

Han, J.; Pei, J.; and Yin, Y. 2000. Mining frequent patterns
without candidates generation. Rroceedings of 2000
ACM-SIGMOD International Conference on Management
of Data, 1-12. ACM Press.

Kryszkiewicz, M.; Rybinski, H.; and Gajek, M. 2004.
Dataless transitions between concise representations of fre-
qguent patternsJournal of Intelligent Information Systems
22(1):41-70.

Li, M., and Vitanyi, P. 1997. An Introduction to Kol-
mogorov Complexity and Its Applicatiarpringer-Verlag.

Luong, V. P. 2002. The closed keys base of frequent item-
sets. In Kambayashi, Y.; Winiwarter, W.; and Arikawa, M.,
eds.,Proceedings of 4th International Conference on Data
Warehousing and Knowledge Discovet31-190.

Pan, F.; Cong, G.; Tung, A. K. H.; Yang, J.; and Zaki, M. J.
2003. CARPENTER: Finding closed patterns in long bio-
logical datasets. IProceedings of 9th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 637-642.

Pasquier, N.; Bastide, Y.; Taouil, R.; and Lakhal, L.
1999. Discovering frequent closed itemsets for association
rules. InProceedings of 7th International Conference on
Database Theory (ICDTB98-416.

Rissanen, J. 1978. Modeling by shortest data description.
Automatical4:465-471.

Uno, T.; Kiyomi, M.; and Arimura, H. 2004. LCM ver.2:
Efficient mining algorithms for frequent/closed/maximal
itemsets. INEEE ICDM’'04 Workshop FIMI'04 (Interna-
tional Conference on Data Mining, Frequent Itemset Min-
ing Implementations)

Wang, J.; Han, J.; and Pei, J. 2003. CLOSET+: Search-
ing for the best strategies for mining frequent closed item-
sets. InProceedings of 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD’03), Washington, DC, USA&236-245.

Zaki, M. J., and Hsiao, C.-J. 2002. CHARM: An efficient
algorithm for closed itemset mining. Proceedings of 2nd
SIAM International Conference on Data Mining

