
Minimum Description Length Principle:
Generators are Preferable to Closed Patterns

Jinyan Li 1,∗ Haiquan Li 1 Limsoon Wong 2

1 Institute for Infocomm Research, Singapore
2 National University of Singapore, Singapore
∗ Email: jinyan@i2r.a-star.edu.sg

Jian Pei 3 Guozhu Dong4

3 Simon Fraser University, Canada
4 Wright State University, USA

Abstract

The generators and the unique closed pattern of an
equivalence class of itemsets share a common set of
transactions. The generators are the minimal ones
among the equivalent itemsets, while the closed pattern
is the maximum one. As a generator is usually smaller
than the closed pattern in cardinality, by the Minimum
Description Length Principle, the generator is prefer-
able to the closed pattern in inductive inference and
classification. To efficiently discover frequent genera-
tors from a large dataset, we develop a depth-first algo-
rithm calledGr-growth. The idea is novel in contrast
to traditional breadth-first bottom-up generator-mining
algorithms. Our extensive performance study shows
thatGr-growth is significantly faster (an order or even
two orders of magnitudes when the support thresholds
are low) than the existing generator mining algorithms.
It can be also faster than the state-of-the-art frequent
closed itemset mining algorithms such as FPclose and
CLOSET+.

Introduction
A set of itemsets is said to form anequivalence
class (Bastideet al. 2000) if they occur in the same set
of transactions in a dataset. The maximum itemset (under
set inclusion) in an equivalence class is called aclosed pat-
tern. The minimal itemsets of an equivalence class are called
generators(Pasquieret al. 1999). An itemset that occurs in
many transactions is said to be frequent (Agrawal, Imielin-
ski, & Swami 1993). Frequent closed patterns (Pasquier
et al. 1999) can form a concise and lossless represen-
tation of frequent itemsets. Thus they have been exten-
sively studied (Pasquieret al. 1999; Zaki & Hsiao 2002;
Pan et al. 2003; Wang, Han, & Pei 2003; Grahne &
Zhu 2005; Uno, Kiyomi, & Arimura 2004). On the other
hand, the minimal itemsets of an equivalence class are of-
ten shorter than the maximum one. Thus, by the Mini-
mum Description Length Principle (MDL) (Rissanen 1978;
Grunwald, Myung, & Pitt 2005), generators are preferable
to closed patterns for model selection and classification.

However, existing algorithms (Boulicaut, Bykowski, &
Rigotti 2003; Bastideet al. 2000; Luong 2002; Pasquier

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

et al. 1999; Kryszkiewicz, Rybinski, & Gajek 2004) for
mining frequent generators are slow. All of them adopt a
breadth-first Apriori-join (level-wise bottom-up) approach
to generate candidates. Such an approach generally requires
a lot of memory, and also requires scanning the dataset many
times. We propose here a novel algorithm calledGr-growth
which uses a depth-first search strategy. Our extensive per-
formance study shows thatGr-growth is usually 10-100
times faster than the existing generator mining algorithms. It
is also faster than the state-of-the-art frequent closed itemset
mining algorithms such as CLOSET+ (Wang, Han, & Pei
2003) and FPclose (Grahne & Zhu 2005).

The new data structure used by theGr-growth algorithm
is calledGr-tree, a classical trie structure similar to FP-tree
used in the FP-growth algorithm (Han, Pei, & Yin 2000) for
mining frequent itemsets. There are two critical differences
between the two structures: (i) The header table of aGr-tree
(or a conditionalGr-tree) does not contain anyfull-support
items, but that of an FP-tree always contains them; (ii) the
header table of a conditionalGr-tree does not contain any
frequentpseudo-key items, but that of an FP-tree always con-
tains them. Here, a pseudo-key item is an item that is not a
full-support item and whose union with the root of the tree is
not a generator either. The manipulation of the trees is also
different—the nodes in a single pathGr-tree is examined
only linearly, but combinations of the nodes in a single path
FP-tree are exhaustively enumerated. Thus aGr-tree is very
often smaller and has less computation than an FP-tree.

We elaborate in the next few sections why MDL favors
generators, and how a depth-first search approach can pro-
duce all frequent generators from a dataset at a speed faster
than the state-of-the-art algorithms for mining closed pat-
terns.

Generators and Closed Patterns
A datasetis defined asD = 〈ID, TDBD〉, whereID is a
non-empty finite set ofitemsandTDBD ⊆ 2ID a multiset of
transactions. A subsetI ⊆ ID is called anitemset. An item-
set consisting ofk items is called ak-itemset. Thesupport
of an itemsetI in a datasetD, denoted bysupD(I), is the
number of transactions inTDBD that containI. An itemset
I is said to befrequentin a datasetD iff supD(I) ≥ ms
for a pre-specified thresholdms. For an itemsetI ⊆ ID, we
definefD(I) = {T ∈ TDBD | I ⊆ T}; i.e., all transac-

tions in the dataset containing itemsetI. HencesupD(I) =
|fD(I)|. For a set of transactionsTDB′ ⊆ TDBD, we define
gD(TDB′) = {i ∈ ID | for all T ∈ TDB′, i ∈ T}; i.e., the
set of items which are shared by all transactions inTDB′.

For an itemsetI, clD(I) = gD(fD(I)) is called theclo-
sureof I. The closure induces anequivalence relation∼D
on 2ID by I1 ∼D I2 iff clD(I1) = clD(I2). Thus the
equivalence class[I]D of an itemsetI is defined as the set
{A ⊆ ID | clD(A) = clD(I)}. So, all itemsets in an equiv-
alence class are contained in some common set of transac-
tions. The one and only one maximal element in an equiva-
lence class[I]D, namelyclD(I), is called theclosed pattern
of this equivalence class. The minimal ones are calledgen-
erators.

Example 1 Consider the followingTDB:

Transaction-id Items
T1 a, c, d
T2 b, c, e
T3 a, b, c, e, f
T4 b, e
T5 a, b, c, e

Suppose the minimum support threshold is2. Then, there
are in total 16 frequent itemsets, including the empty set∅
which is trivially frequent. The frequent itemsets as well as
their set inclusion relation are shown in the following figure.
These frequent itemsets can be divided into6 equivalence

ae:2 be:4 bc:3 ce:3

abce:2

abc:2 bce:3ace:2abe:2

b:4a:3 c:4 e:4

{}:5

ab:2 ac:3

classes, as bounded by the dash lines in this figure. In each
class, the itemset at the bottom is the closed itemset, and
the itemsets at the top are the generators. In particular, the
itemsetabce is a closed pattern, andfD(abce) consists of
two transactions:T3 = {a, b, c, e, f} andT5 = {a, b, c, e}.
The equivalence class[abce]D is {abce, abc, abe, ace, ab,
ae}. The generators of[abce]D areab andae. Some closed
patterns are also generators, for example, the itemsetc.

MDL Favors Generators
The Minimum Description Length Principle (MDL) was
proposed by (Rissanen 1978), developed by (Li & Vitanyi
1997), and recently surveyed by (Grunwald, Myung, & Pitt
2005). This principle provides a generic solution to the
model selection problem. MDL has a sound statistical foun-
dation rooted in the well-known Bayesian inference and
Kolmogorov complexity.

A crude two-part version of MDL (Grunwald, Myung, &
Pitt 2005) is as follows: LetH = {H1,H2, · · · ,Hn} be a set

of hypothesis learned from a datasetD. The best hypothesis
H ∈ H to explainD is the one which minimizes the sum
L(H, D) = L(H) + L(D|H), where

• L(H) is the length, in bits, of the description of hypothe-
sisH; and

• L(D|H) is the length, in bits, of the description of the
data when encoded with the help of hypothesisH.

We bring this principle into the context of generators and
closed patterns in a similar way to (Gao, Li, & Vitanyi
2000), where robot arm learning and hand-written character
recognition problems are discussed. LetEc be an equiva-
lence class of some datasetD, C the closed pattern ofEc,
andG a generator ofEc. LetDC

G = fD(C) = fD(G). Then
C andG are two hypothesis describing the dataDC

G. ForC,
the description lengthL(C, DC

G) = L(C) + L(DC
G|C). For

G, the description lengthL(G,DC
G) = L(G) + L(DC

G|G).
The closed patternC and the generatorG occur in the
same dataDC

G. So,L(DC
G|C) = L(DC

G|G). Therefore, if
L(C) > L(G), thenL(C,DC

G) > L(G,DC
G). This is often

true because the cardinality ofC is often larger than that of
G. So, by MDL, the generatorG is preferable to the closed
patternC for describing its transaction setDC

G.
This preference is particularly obvious in classification

problems. For an application where only two classes of
transactions are involved, suppose transactions inDC

G all
have the same class label, say,positiveclass. Also assume
that the closed patternC hasn itemsa1, a2, · · · , an (n > 2),
and the generatorG has only 2 itemsa1 anda2. Then, we
can get two rules:

• One derived fromC: If a transaction containsa1 anda2

and· · · andan, then it is positive.

• The other derived fromG: If a transaction containsa1

anda2, then it is positive.

Note that the two rules are both satisfied by all transactions
in DC

G but no other transactions inD.
The second rule should be more predictive on independent

test data than the first one, because a true test sample is more
likely to satisfy the two itemsa1 anda2 than to satisfy then
items contained inC. So, when some noise is present in the
test data, the second rule can better tolerate the noise errors
than the first rule.

Gr-growth: Mining Frequent Generators
We next present some properties of generators. Then we
introduce our depth-firstGr-growth algorithm for mining
frequent generators with the help of a new data structure
calledfrequent generator tree, or frequentGr-tree in short.
A Gr-tree is a typical trie structure, storing all relevant in-
formation of a dataset for mining frequent generators.

Proposition 1 LetD = 〈ID, TDBD〉 be a dataset. LetGD
be the set of generators. LetA be an itemset. ThenA ∈ GD
iff supD(A) < supD(B) for every proper subsetB of A.
Proof: We first consider the “only if” direction. Suppose
A ∈ GD and B is a proper subset ofA. Then we have

fD(A) ⊆ fD(B). As A ∈ GD, we haveB is in a differ-
ent equivalence class from that ofA. ThereforefD(A) ⊂
fD(B). SosupD(A) < supD(B).

We next prove the “if” part by contradiction. AssumeA
is not a generator in an equivalence class. Then there exists
an itemsetB in this equivalence class that is a proper subset
of A. So,supD(B) = supD(A). But, this is a contradiction
becausesupD(A) < supD(B) for every proper subsetB of
A. So,A must be a generator. ut
Proposition 2 (Apriori property of generators) Let GD
be the set of generators of a datasetD. Then for allA ∈ GD,
every proper subsetB of A is a generator, i.e.B ∈ GD;
and for all X 6∈ GD, every proper supersetY of X is not a
generator, i.e.Y 6∈ GD.
Proof: We prove by contradiction. SupposeA is a generator
of D andB ⊂ A is not. DenoteC = clD(B). Then, there
is a generatorB′ of the equivalence class ofC such that
B′ ⊂ B. LetA = B∪V such thatB∩V = ∅. AsB′ andB
are in the same equivalence class, we havesupD(B′∪V) =
supD(B ∪ V) = supD(A). That is,A has a proper subset
B′ ∪ V with the same support as itself. However,A is a
generator. By Proposition 1, all its proper subsets must have
a larger support than that ofA. This is a contradiction.
Therefore,B is a generator.

The above proof implies that for allX 6∈ GD, every proper
supersetY of X is not a generator, i.e.Y 6∈ GD. ut
Corollary 1 If a frequent 1-itemset’s support is less than the
total number of transactions of a dataset, then this 1-itemset
is a frequent generator.

The items in frequent 1-itemset generators will be referred
to as frequent key items. It is easy to see that afull-support
item(an item occurring in every transaction of aTDB) is not
a key item ofTDB.

Frequent Gr-tree and Conditional Gr-tree
Let D = 〈ID, TDBD〉 be a dataset. Let a support thresh-
old ms be given. A frequentGr-tree of D, denoted by
Gr-tree|∅D,ms, is constructed by the algorithm shown in Fig-
ure 1.

A frequent conditionalGr-tree is constructed from acon-
ditional TDB:

Definition 1 (Conditional TDB) LetD = 〈ID, TDBD〉 be
a dataset. Let a support thresholdms be given. LetTree
be a frequentGr-tree of TDBD with respect toms. Let
a1, a2, · · · , an be items in the header table ofTree. For ai

(i = 1, · · · , n), we defineai’s conditionalTDB, denoted by

TDB|{ai}
D,ms, as the set of path segments exclusively between

the root andai for all paths inTree containingai.

Each path segment is equivalent to an itemset, with sup-
port equal to that ofai in that path. So we can say that
TDB|{ai}

D,ms is a set of transactions.

Definition 2 (Full-support items) An item e is called a
full-support item ofTDB|{ai}

D,ms, if its support inTDB|{ai}
D,ms

is equal toai’s support.

Algorithm 1 (FrequentGr-tree construction)
Input: A datasetD = 〈ID, TDBD〉 and ams.
Output: A frequentGr-tree|∅D,ms.
Method: The construction consists of two steps:

1. Collect the set of frequent key items – Cf. Corollary 1. Create a header table

to store them in a support descending orderL.

2. Create the root of the treeT , and label it as∅. For each transactionTrans

in TDBD do the following.

Remove those items fromTrans that are infrequent or that are full-support

items. Sort the remaining items according to the order ofL. Let the resulting

list be [p|P], wherep is the first element andP is the remaining list. Call

insert tree([p|P], T).

The functioninsert tree([p|P], T) (Han, Pei, & Yin 2000) is performed

as follows: IfT has a childN such thatN .item-name =p.item-name, then

incrementN ’s count by 1; else create a new nodeN , and let its count be 1,

its parent link be linked toT , and its node-link be linked to the nodes with

the same item-name via a node-link structure. IfP is nonempty, recursively

call insert tree(P, N).

Figure 1: Steps of constructing a frequentGr-tree.

Definition 3 (Conditional Gr-tree) Following the nota-
tions in Definition 1, we defineai’s conditional frequent
Gr-tree, denoted byGr-tree|{ai}

D,ms, as a tree structure sat-
isfying the following conditions:

1. It consists of one root labeled as “{ai}”, a set of item
prefix subtrees as the children of the root, and a header
table storing a list of items satisfying:

(a) They are frequent but not full-support items in
TDB|{ai}

D,ms; and

(b) They are not pseudo-key items, that is, the union of any
e from them and the root (i.e.,{e, ai}) is a generator of
D.

2. The fields of each node of the tree and each entry in the
header table have exactly the same meaning as a normal
Gr-tree.

Based onGr-tree|{ai}
D,ms, for an item aj in the header

of Gr-tree|{ai}
D,ms, similarly we can defineaj ’s conditional

TDB and aj ’s conditionalGr-tree, which are denoted by

TDB|{ai,aj}
D,ms andGr-tree|{ai,aj}

D,ms respectively. Usually, we
denote a conditionalTDB asTDB|αD,ms, and a conditional
Gr-tree asGr-tree|αD,ms, for some itemsetα. We also write
TDB|α andGr-tree|α if D andms are understood.

Determining whether the union of a frequent iteme with
the rootα is a generator—as required by Definition 3—costs
most of the time in constructing the header table of the con-
ditional tree. This is also a unique feature of conditional
Gr-tree—a conditional FP-tree (Han, Pei, & Yin 2000) does
not require this. The cost of such a determination opera-
tion can be achieved in constant time by using a hash-table
consisting of generators already found. Also observe that
as many frequent itemse may be not in the header table,
a frequent conditionalGr-tree is very often smaller than a
conditional FP-tree.

Example 2 LetD = 〈ID, TDBD〉 be a dataset whereID =
{a, b, c, d, e, f , g, h, i} andTDBD consists of 6 transactions

Table 1: A dataset for our running example.
Transactions Transactions after item

removal and re-ordering

{a, b, c, d, e, g} {a, b, c, d}
{a, b, c, d, e, f} {a, b, c, d}
{a, b, c, d, e, h, i} {a, b, c, d, h, i}
{a, b, d, e} {a, b, d}
{d, c, a, e, h, i} {a, c, d, h, i}
{e, c, b} {b, c}

as shown in the left column of Table 1. Here, we also set
ms = 2.

The support information of the 9 items isa:5, b:5, c:5,
d:5, e:6, g:1, f :1, h:2, i:2. However, only 6 items as sorted
in the listL = 〈a:5, b:5, c:5, d:5, h:2, i:2〉 are in the header
table ofGr-tree|∅D,ms. Iteme is not there, since it is a full-
support item. By Proposition 1 and Proposition 2, itemset
e itself and all its supersets cannot be a generator. All fre-
quent generators of this dataset can be formed using only
the items in the header table. So, we can remove unneces-
sary items from the 6 transactions. The reduced transactions
are shown in the right column of Table 1, which are then
scanned to construct the tree usingAlgorithm 1. The whole
tree, after constructing node-links from the header table to
the first node of the tree carrying the item-name, is depicted
in the following figure.

c:3

h:1

d:3

i:1

b:4

a:5

i:1

h:1

d:1

c:1

d:1

b:1

c:1

head table

a 5

b 5

c 5

d 5

h 2

i 2

A frequent Gr−tree

root

Gr-growth: Discovering All Frequent Generators

Given a datasetD = 〈ID, TDBD〉 and a thresholdms. Let
L = 〈a1, a2, a3, · · · , an〉 be the list of frequent key items in
a support descending order of this dataset. These items are
also precisely the items in the header table of the frequent
Gr-tree|∅D,ms. Suppose this frequentGr-tree is not a single-
path tree. Observe that, in addition to the default generator∅,
other frequent generators of thisD can be divided inton
non-overlapping groups:

• those containing iteman;

• those containing iteman−1 but notan;

• . . .;

• those containing itemak but no item in{ak+1, · · · , an};
and so on untilk = 1.

We denote thek-th group of generators asgroupk =
{G | G is a generator,ak ∈ G, but no item in{ak+1, ak+2,
. . . ,an} ∈ G}, for k = 1, . . . , n.

Algorithm 2 (Gr-growth—Mining frequent generators)
Input: Gr-tree|∅D,ms constructed byAlgorithm 1 fromD.
Output: The complete set of frequent generators.
Method: Call Gr-growth(Gr-tree|∅D,ms, null).
Gr-growth(Tree, α)

1: generate patternα with support= α.support;

2: if Tree = ∅ then
3: return ;

4: end if
5: if Tree contains a single pathP then
6: for each nodee in the pathP do
7: generate pattern{e.item} ∪ α with support= e.support;

8: end for
9: else

10: let a1, a2, · · · , an be items in the header ofTree in support-descending

order;

11: for eachai, i from 1, · · · , to n do
12: β = {ai} ∪ α with support= ai.support;

13: constructTDB|βD,ms
andGr-tree|βD,ms

;

14: call Gr-growth(Gr-tree|βD,ms
, β);

15: end for

16: end if

Figure 2: TheGr-Growth algorithm.

We can obtain sufficient transaction information for min-
ing groupk from TDB|{ak}

D,ms. By definition, the con-

struction of TDB|{ak}
D,ms can be derived from the frequent

Gr-tree|∅D,ms by a traversal of theak ’s node-links starting

from ak ’s in the header table ofGr-tree|∅D,ms. Then we

construct frequentGr-tree|{ak}
D,ms. If Gr-tree|{ak}

D,ms is a sin-
gle path tree, then the mining ofgroupk terminates; and the
generators are{ak} in addition to those that are union of
{ak} with every item in the header table ofGr-tree|{ak}

D,ms.

If Gr-tree|{ak}
D,ms is empty, thengroupk = {{ak}}; and the

mining also terminates. Otherwise, ifGr-tree|{ak}
D,ms is a

multiple-branch tree, then we do a recursive repartition by
dividing groupk into subsets according to the items stored
in the header table ofGr-tree|{ak}

D,ms. The details of this re-
cursion are as follows. Suppose the items in the header ta-
ble of Gr-tree|{ak}

D,ms are the listL′ = 〈a′1, a′2, a′3, · · · , a′n′〉.
Then, in addition to the generator{ak}, we dividegroupk

into n′ subsets: those containing itema′n′ ; those containing
item a′n′−1 but not a′n′ ; . . . ; those containing itema′i but
none in{a′i+1, · · · , a′n′}; and so on untili = 1.

Similarly, we can deal with other groups of generators.
The whole recursive process eventually leads to a non-
overlapping partition of all the generators—some divisions
contain only one pattern each, and the other divisions each
corresponds to a single-path conditionalGr-tree. The algo-
rithm is shown in Figure 2.

We define an enumeration ordering on the nodes of
Gr-tree to prove the soundness and the completeness of
Gr-growth.

Definition 4 (Set-enumeration property) Let T be the
Gr-tree constructed from a datasetD with respect to a sup-

port thresholdms. Let the header items bea0, a1, . . . , an

in descending order of support. For any pathP formed by a
combination ofa0, a1, . . . ,an, let κD(P) =

∑
ai∈P 2i. For

any two pathsP andQ in theGr-tree, we writeP ≤κD Q
if κD(Q) ≤ κD(P). Note thatP ⊆ Q impliesQ ≤κD P .

The recursion inGr-growth is arranged to produce gen-
erators in the reverse of the set-enumeration order. That is,
for generatorsα andβ, Gr-growth producesβ after α iff
β ≤κD α. This gives an important optimization for line 13.
Recall that in constructing the conditionalGr-tree|βD,ms, we
are only allowed to put those itemse into the header table
of Gr-tree|βD,ms, provided{e} ∪ β is a frequent generator.
To check whether{e} ∪ β is a generator, we need to check
if each of its immediate subsetsβ′ is a generator. Since
({e}∪β) ≤κD β′, β′ is produced before{e}∪β. This way,
we can store aβ′ that is a generator into a hash table. Then
when it comes to checking whether the immediate subsets
of {e} ∪ β is a generator, we can easily look that up from
the hash table.

Theorem 1 (Correctness of Gr-growth) Gr-growth is
sound and complete. That is, given a datasetD and a
support thresholdms, it produces all generators and only
the generators ofD with respect toms.

Limited by space, the proof of this theorem is omitted.
We use the frequentGr-tree|∅ in Example 2 to demon-

strate howGr-growth proceeds, where the sorted list of the
frequent key itemsL = 〈a:5, b:5, c:5, d:5, h:2, i:2〉. The
Gr-growth algorithm starts with the first key itema:5 after
outputting the generator∅, the root-node ofGr-tree|∅. Gen-
erators containinga but notb, c, d, h or i are very limited.
They area : 5 only. This is becauseTDB|a:5 is empty.

ThenGr-growth moves to deal with the second key item
b:5. That is to mine generators containingb but notc, d, h
or i. The construction ofTDB|b:5 is easy; it is{{a : 4}, ∅}.
Then we constructGr-tree|b:5. At this time, we get genera-
tor b:5, the root node of the conditional tree. AsGr-tree|b:5
is a single path tree, we can get another generatorba:4 for
this generator group by concatenatingb to a:4.

ThenGr-growth moves to handle the third key itemc:5.
For mining generators containingc but not d, h or i, suf-
ficient transaction information for this subset of generators
come from three path segments ofGr-tree: 〈a:5, b:4〉, 〈a:5〉,
and 〈b:1〉. ThereforeTDB|c:5 is {ab:3, a:1, b: 1}. The
support information of the items inTDB|c:5 are: a:4 and
b:4. Then the list of frequent items in the header table
of Gr-tree|c:5 is 〈a:4, b:4〉. At this moment, we get the
first generatorc:5 for this generator group. AsGr-tree|c:5
is not a single path tree, we apply the same divide-and-
conquer searching strategy again to find two subsets of fre-
quent generators ofTDB|c:5: those containinga but notb,
and those containingb. The former consists of onlyca:4
as Gr-tree|c:5,a:4 is an empty tree. The latter consists of
cb:4 andcba:3. Similarly,Gr-growth handles the remaining
three itemsd:5, h:2, andi:2 in the header table to finish the
mining.

In summary, all frequent generators for the dataset in Ta-
ble 1, in the order of the output byGr-growth, are∅:6, a:5,

b:5, ba:4 c:5, ca:4, cb:4, cba:3, d:5, db:4, dc:4, dcb:3, h:2,
andi:2.

Performance Study
In this section, we report the performance ofGr-growth in
comparison to the performance of existing generator min-
ing algorithms and two closed pattern mining algorithms
CLOSET+ (Wang, Han, & Pei 2003) and FPclose (Grahne
& Zhu 2005). The experiments are conducted on four bench-
mark datasets from the Frequent Itemset Mining Imple-
mentations Repository (http://fimi.cs.helsinki.
fi/). The four datasets are: Mushroom (8124 transac-
tions and 119 items), Connect-4 (67557 transactions and
129 items), Chess (3196 transactions and 75 items), and
T40I10D100K (100000 transactions and 942 items).

The implementation ofGr-growth is based on the source
codes available fromhttp://www.cs.concordia.
ca/db/dbdm/dm.html , written in C++ and compiled
by Visual C++ (v6.0) and executed on a PC with a Pen-
tium(R) 4 CPU, 2.4GHz, and 512MB of RAM. The ex-
ecutable code of CLOSET+ and FPclose are from their
authors. To implement the breadth-first search strategy
adopted by all existing algorithms for mining frequent gen-
erators, we used the source codes for the implementation of
Apriori by Borgelt (2003).

The performance results are depicted in Figure 3. We can
see thatGr-growth is consistently faster than the traditional
generator mining algorithm. For some datasets, especially
when the minimum support threshold is low, the speed-up
by Gr-growth is at least an order of magnitude or even 2 or-
ders sometimes. For example, in the case ofms = 20% on
the connect-4 dataset, the speed-up is around 190.0 times.
Other similar cases can be also observed from the connect-4
and chess datasets. All these results clearly indicate that our
depth-first searching strategy is indeed efficient for mining
frequent generators with significant speed-up over the tradi-
tional algorithms.

Gr-growth is usually 2-4 times faster than CLOSET+;
the speed-up can reach up to 10 times for cases such as
ms = 30% on chess andms = 0.5% on T40I10D100K.
Gr-growth is also faster than FPclose in general, but the
speed-up is sometimes significant, sometimes slight, and
sometimes the two algorithms are comparable. The reason
that these two closed pattern mining algorithms are slower
than Gr-growth is mainly because they use an additional
tree structure to store candidate itemsets recommended by
the FP-tree, and then to filter out those candidates that are
not closed patterns.Gr-growth does not require such an ex-
tra, large, filtering tree structure.

The length difference between the closed pattern and the
shortest generator of an equivalence class is interesting. For
the mushroom dataset at the minimum support level of 20%,
we ranked the top 100 equivalence classes in terms of the
length difference. The difference of the top-ranked equiva-
lence class is 13 where the length of the closed pattern is 14,
and that of the shortest generator is 1. There are many other
similar equivalence classes. Obviously, by MDL, those gen-
erators are much more preferred than the closed patterns.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 1 0.5 0.25 0.125 0.0625

tim
e

(s
)

minimum support threshold (%)

(a) On mushroom dataset

Gr-growth
breadth-first

FPclose
CLOSET+

 1

 10

 100

 1000

 10000

 60 50 40 30 25 20

tim
e

(s
)

minimum support threshold (%)

(b) On connect-4 dataset

Gr-growth
breadth-first

FPclose
CLOSET+

 0.01

 0.1

 1

 10

 100

 1000

 10000

 80 70 60 50 40 30

tim
e

(s
)

minimum support threshold (%)

(c) On chess dataset

Gr-growth
breadth-first

FPclose
CLOSET+

 0.1

 1

 10

 100

 1000

 16 12 8 4 1 0.5

tim
e

(s
)

minimum support threshold (%)

(d) On T40I10D100K dataset

Gr-growth
breadth-first

FPclose
CLOSET+

Figure 3: For mining frequent generators, ourGr-growth algorithm is significantly faster than the traditional breadth-first
search strategy on the four benchmark datasets.Gr-growth is also faster than closed pattern mining algorithms.

Conclusions
We have proposed a new algorithmGr-growth for min-
ing frequent generators from a dataset. The success of
Gr-growth is mainly attributed to the depth-first search strat-
egy and the compact trie structureGr-tree. With these two
ideas, we have accelerated the speed of mining generators
significantly, by at least an order of magnitude when the
support threshold is low. Its speed is also faster than that of
closed pattern mining algorithms FPclose and CLOSET+.

Based on MDL, we have demonstrated that generators
are preferable to closed patterns in particular in rule induc-
tion and classification. Now that mining generators is faster
than mining closed patterns, as a future work, we will study
how generators are used for classification problems. We will
also study in what situations using generators is significantly
more reliable than using closed patterns in solving real-life
prediction problems.

References
Agrawal, R.; Imielinski, T.; and Swami, A. 1993. Mining
association rules between sets of items in large databases.
In Proceedings of 1993 ACM-SIGMOD International Con-
ference on Management of Data, 207–216. Washington,
D.C.: ACM Press.

Bastide, Y.; Taouil, R.; Pasquier, N.; Stumme, G.; and
Lakhal, L. 2000. Mining frequent patterns with counting
inference.SIGKDD Explorations2(2):66–75.

Borgelt, C. 2003. Efficient implementation of apriori and
eclat. InProceedings of FIMI’03: Workshop on Frequent
Itemset Mining Implementations.

Boulicaut, J.-F.; Bykowski, A.; and Rigotti, C. 2003. Free-
sets: A condensed representation of boolean data for the
approximation of frequency queries.Data Mining and
Knowledge Discovery7(1):5–22.

Gao, Q.; Li, M.; and Vitanyi, P. 2000. Applying mdl
to learning best model granularity.Artificial Intelligence
121:1–29.

Grahne, G., and Zhu, J. 2005. Fast algorithms for fre-
quent itemset mining using fp-trees.IEEE Transactions on
Knowledge and Data Engineering17(10):1347–1362.

Grunwald, P.; Myung, I. J.; and Pitt, M. 2005.Advances
in Minimum Description Length: Theory and Applications.
MIT Press.
Han, J.; Pei, J.; and Yin, Y. 2000. Mining frequent patterns
without candidates generation. InProceedings of 2000
ACM-SIGMOD International Conference on Management
of Data, 1–12. ACM Press.
Kryszkiewicz, M.; Rybinski, H.; and Gajek, M. 2004.
Dataless transitions between concise representations of fre-
quent patterns.Journal of Intelligent Information Systems
22(1):41–70.
Li, M., and Vitanyi, P. 1997. An Introduction to Kol-
mogorov Complexity and Its Applications. Springer-Verlag.
Luong, V. P. 2002. The closed keys base of frequent item-
sets. In Kambayashi, Y.; Winiwarter, W.; and Arikawa, M.,
eds.,Proceedings of 4th International Conference on Data
Warehousing and Knowledge Discovery, 181–190.
Pan, F.; Cong, G.; Tung, A. K. H.; Yang, J.; and Zaki, M. J.
2003. CARPENTER: Finding closed patterns in long bio-
logical datasets. InProceedings of 9th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 637–642.
Pasquier, N.; Bastide, Y.; Taouil, R.; and Lakhal, L.
1999. Discovering frequent closed itemsets for association
rules. InProceedings of 7th International Conference on
Database Theory (ICDT), 398–416.
Rissanen, J. 1978. Modeling by shortest data description.
Automatica14:465–471.
Uno, T.; Kiyomi, M.; and Arimura, H. 2004. LCM ver.2:
Efficient mining algorithms for frequent/closed/maximal
itemsets. InIEEE ICDM’04 Workshop FIMI’04 (Interna-
tional Conference on Data Mining, Frequent Itemset Min-
ing Implementations).
Wang, J.; Han, J.; and Pei, J. 2003. CLOSET+: Search-
ing for the best strategies for mining frequent closed item-
sets. InProceedings of 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD’03), Washington, DC, USA, 236–245.
Zaki, M. J., and Hsiao, C.-J. 2002. CHARM: An efficient
algorithm for closed itemset mining. InProceedings of 2nd
SIAM International Conference on Data Mining.

