Coping with NP-completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?
A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

• Solve problem to optimality.
• Solve problem in polynomial time.
• Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems.
Vertex cover

Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$ or $v \in S$ or both?

$S = \{3, 6, 7, 10\}$ is a vertex cover of size $k = 4$

Finding small vertex covers

Q. VERTEX-COVER is NP-complete. But what if k is small?

Brute force. $O(kn^{k+1})$.
- Try all $C(n, k) = O(n^k)$ subsets of size k.
- Takes $O(kn)$ time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, say to $O(2^k kn)$.

Ex. $n = 1,000$, $k = 10$.

Brute. $kn^{k+1} = 10^{34}$ \Rightarrow infeasible.

Better. $2^k kn = 10^7$ \Rightarrow feasible.

Remark. If k is a constant, then the algorithm is poly-time; if k is a small constant, then it's also practical.
Finding small vertex covers

Claim. Let \((u, v)\) be an edge of \(G\). \(G\) has a vertex cover of size \(\leq k\) iff at least one of \(G - \{u\}\) and \(G - \{v\}\) has a vertex cover of size \(\leq k - 1\).

Pf. \(\Rightarrow\)
- Suppose \(G\) has a vertex cover \(S\) of size \(\leq k\).
- \(S\) contains either \(u\) or \(v\) (or both). Assume it contains \(u\).
- \(S - \{u\}\) is a vertex cover of \(G - \{u\}\).

Pf. \(\Leftarrow\)
- Suppose \(S\) is a vertex cover of \(G - \{u\}\) of size \(\leq k - 1\).
- Then \(S \cup \{u\}\) is a vertex cover of \(G\). ■

Claim. If \(G\) has a vertex cover of size \(k\), it has \(\leq k\ (n - 1)\) edges.
Pf. Each vertex covers at most \(n - 1\) edges. ■

Finding small vertex covers: algorithm

Claim. The following algorithm determines if \(G\) has a vertex cover of size \(\leq k\) in \(O(2^k kn)\) time.

\[
\text{Vertex-Cover}(G, k) \{
 \text{if (G contains no edges) return true}
 \text{if (G contains \(\geq kn\) edges) return false}
 \text{let (u, v) be any edge of G}
 a = \text{Vertex-Cover}(G - \{u\}, k-1)
 b = \text{Vertex-Cover}(G - \{v\}, k-1)
 \text{return a or b}
\}
\]

Pf.
- Correctness follows from previous two claims.
- There are \(\leq 2^{k+1}\) nodes in the recursion tree; each invocation takes \(O(kn)\) time. ■
Finding small vertex covers: recursion tree

\[
T(n, k) \leq \begin{cases}
 c & \text{if } k = 0 \\
 cn & \text{if } k = 1 \\
 2T(n, k-1) + ckn & \text{if } k > 1
\end{cases} \quad \Rightarrow \quad T(n, k) \leq 2^k c kn
\]
Independent set on trees

Independent set on trees. Given a tree, find a maximum cardinality subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.

![Diagram of a tree with degree 1]

Key observation. If \(v \) is a leaf, there exists a maximum size independent set containing \(v \).

Pf. (exchange argument)
- Consider a max cardinality independent set \(S \).
- If \(v \in S \), we’re done.
- If \(u \notin S \) and \(v \notin S \), then \(S \cup \{v\} \) is independent \(\Rightarrow S \) not maximum.
- If \(u \in S \) and \(v \notin S \), then \(S \cup \{v\} - \{u\} \) is independent.

Independent set on trees: greedy algorithm

Theorem. The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees).

```
Independent-Set-In-A-Forest(F) {
    S ← ∅
    while (F has at least one edge) {
        Let \( e = (u, v) \) be an edge such that \( v \) is a leaf
        Add \( v \) to \( S \)
        Delete from \( F \) nodes \( u \) and \( v \), and all edges incident to them.
    }
    return \( S \)
}
```

Pf. Correctness follows from the previous key observation.

Remark. Can implement in \(O(n) \) time by considering nodes in postorder.
Weighted independent set on trees

Weighted independent set on trees. Given a tree and node weights $w_v > 0$, find an independent set S that maximizes $\sum_{v \in S} w_v$.

Observation. If (u, v) is an edge such that v is a leaf node, then either OPT includes u or OPT includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.

- $OPT_{in}(u) = \max$ weight independent set of subtree rooted at u, containing u.
- $OPT_{out}(u) = \max$ weight independent set of subtree rooted at u, not containing u.

\[
OPT_{in}(u) = w_u + \sum_{v \in \text{children}(u)} OPT_{out}(v)
\]

\[
OPT_{out}(u) = \sum_{v \in \text{children}(u)} \max\{OPT_{in}(v), OPT_{out}(v)\}
\]

children(u) = { v, w, x }

Weighted independent set on trees: dynamic programming algorithm

Theorem. The dynamic programming algorithm finds a maximum weighted independent set in a tree in $O(n)$ time.

```
Weighted-Independent-Set-In-A-Tree(T) {
    Root the tree at a node r
    foreach (node u of T in postorder) {
        if (u is a leaf) {
            M_{in}[u] = w_u
            M_{out}[u] = 0
        }
        else {
            M_{in}[u] = w_u + \sum_{v \in \text{children}(u)} M_{out}[v]
            M_{out}[u] = \sum_{v \in \text{children}(u)} \max(M_{in}[v], M_{out}[v])
        }
    }
    return max(M_{in}[r], M_{out}[r])
}
```
Context

Independent set on trees. This structured special case is tractable because we can find a node that **breaks the communication** among the subproblems in different subtrees.

![Tree Diagram]

Graphs of bounded tree width. Elegant generalization of trees that:
- Captures a rich class of graphs that arise in practice.
- Enables decomposition into independent pieces.

Vertex cover

Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge (u, v) either $u \in S$ or $v \in S$ or both?

![Vertex Cover Diagram]

vertex cover $S = \{ 3, 4, 5, 1', 2' \}$
Vertex cover and matching

Weak duality. Let M be a matching, and let S be a vertex cover. Then, $|M| \leq |S|.$

Pf. Each vertex can cover at most one edge in any matching.

Vertex cover in bipartite graphs: König-Egerváry Theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

matching M: 1–1', 2–2', 3–4', 4–5'

vertex cover $S = \{3, 4, 5, 1', 2'\}$
Proof of König-Egerváry theorem

Theorem. [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching M and cover S such that $|M| = |S|$.
- Formulate max flow problem as for bipartite matching.
- Let M be max cardinality matching and let (A, B) be min cut.

```
Proof of König-Egerváry theorem

**Theorem.** [König-Egerváry] In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching $M$ and cover $S$ such that $|M| = |S|$.
- Formulate max flow problem as for bipartite matching.
- Let $M$ be max cardinality matching and let $(A, B)$ be min cut.
- Define $L_A = L \cap A$, $L_B = L \cap B$, $R_A = R \cap A$, $R_B = R \cap B$.

  - **Claim 1.** $S = L_B \cup R_A$ is a vertex cover
    - consider $(u, v) \in E$
    - $u \in L_A$, $v \in R_B$ impossible since infinite capacity
    - thus, either $u \in L_B$ or $v \in R_A$ or both

  - **Claim 2.** $|M| = |S|$
    - max-flow min-cut theorem $\Rightarrow |M| = \text{cap}(A, B)$
    - only edges of form $(s, u)$ or $(v, t)$ contribute to $\text{cap}(A, B)$
    - $|M| = \text{cap}(A, B) = |L_B| + |R_A| = |S|$.
```