All-Pairs Shortest Paths

Given: Digraph $G=(V,E)$, where $V=\{1,2,\ldots,n\}$, possibly negative costs $c(i,j)$, BUT no negative cycles!

($c(i,j) = \infty$ means no edge (i,j) in G)

Compute: $D(i,j) =$ cost of cheapest path from i to j, for all i,j in V.

Later, will also want an algorithm that, given (i,j), finds a cheapest path from i to j.

Observation: Every cheapest path from i to j must be simple, i.e., with no cycles!

Floyd-Warshall DP algorithm

Step 1: Array

$A(k,i,j) =$ the cost of cheapest path from i to j with at most k intermediate nodes

Step 2: Recurrence

$A(0,i,i) = 0, \forall i$

$A(0,i,j) = c(i,j), \forall i \neq j$

$\forall k > 0, \forall i,j$

$A(k,i,j) = \min\{A(k-1,i,j), A(k-1,i,k) + A(k-1,k,j)\}$

Case 1: node k is not used
Step 3: Algorithm to fill in the array.

array $A[k, i, j]$, $0 \leq k \leq n$, $1 \leq i \leq n$, $1 \leq j \leq n$

Run time: $O(n^3)$

Given (i, j) points out cheapest

$\delta(i, j) = A[n, i, j]$

\oplus means

Time: $O(n)$

Step 4: Recover shortest paths from the array

Shortest paths

Shortest path problem. Given a digraph $G = (V, E)$, with arbitrary edge weights or costs c_{ij}, find cheapest path from node s to node t.

![Diagram of shortest paths example]

Source s

Cost of path = $9 - 3 + 1 + 11 = 18$

Destination t
Shortest paths: failed attempts

Dijkstra. Can fail if negative edge weights.

Reweighting. Adding a constant to every edge weight can fail.

Negative cycles

Def. A negative cycle is a directed cycle such that the sum of its edge weights is negative.

\[\pi(W) = \sum_{e \in W} c_e < 0 \]
Shortest paths and negative cycles

Lemma 1. If some path from \(v \) to \(t \) contains a negative cycle, then there does not exist a cheapest path from \(v \) to \(t \).

Pf. If there exists such a cycle \(W \), then can build a \(v \rightarrow t \) path of arbitrarily negative weight by detouring around cycle as many times as desired. ■

\[
\text{\(c(W) < 0 \)}
\]

Shortest paths and negative cycles

Lemma 2. If \(G \) has no negative cycles, then there exists a cheapest path from \(v \) to \(t \) that is simple (and has \(\leq n - 1 \) edges).

Pf.
- Consider a cheapest \(v \rightarrow t \) path \(P \) that uses the fewest number of edges.
- If \(P \) contains a cycle \(W \), can remove portion of \(P \) corresponding to \(W \) without increasing the cost. ■

\[
\text{\(c(W) \geq 0 \)}
\]
Shortest path and negative cycle problems

Shortest path problem. Given a digraph $G = (V, E)$ with edge weights c_{uv} and no negative cycles, find cheapest $v \rightarrow r$ path for each node v.

Negative cycle problem. Given a digraph $G = (V, E)$ with edge weights c_{uv}, find a negative cycle (if one exists).

Shortest paths: dynamic programming

Def. $OPT(i, v) =$ cost of shortest $v \rightarrow r$ path that uses $\leq i$ edges.

- Case 1: Cheapest $v \rightarrow r$ path uses $\leq i - 1$ edges.
 - $OPT(i, v) = OPT(i - 1, v)$

- Case 2: Cheapest $v \rightarrow r$ path uses exactly i edges.
 - if (v, w) is first edge, then OPT uses (v, w), and then selects best $w \rightarrow r$ path using $\leq i - 1$ edges

$OPT(i, v) = \begin{cases} \infty & \text{if } i = 0 \\ \min \{ OPT(i - 1, v), \min_{(v, w) \in E} \{ OPT(i - 1, w) + c_{vw} \} \} & \text{otherwise} \end{cases}$

Observation. If no negative cycles, $OPT(n - 1, v) =$ cost of cheapest $v \rightarrow r$ path.

Pf. By Lemma 2, cheapest $v \rightarrow r$ path is simple. ♦
Shortest paths: implementation

\textbf{Shortest-Paths} \((V, E, c, t)\)

\textbf{FOREACH} node \(v \in V\)
\[M[0, v] \leftarrow \infty, \]
\[M[0, t] \leftarrow 0. \]
\textbf{FOR} \(i = 1\) \textbf{TO} \(n - 1\)
\textbf{FOREACH} node \(v \in V\)
\[M[i, v] \leftarrow M[i-1, v]. \]
\textbf{FOREACH} edge \((v, w) \in E\)
\[M[i, v] \leftarrow \min \{ M[i, v], M[i-1, w] + c_{vw} \}. \]

\textbf{Theorem 1.} Given a digraph \(G = (V, E)\) with no negative cycles, the dynamic programming algorithm computes the cost of the cheapest \(v \rightarrow w\) path for each node \(v\) in \(\Theta(mn)\) time and \(\Theta(n^2)\) space.

\textbf{Pf.}
- Table requires \(\Theta(n^2)\) space.
- Each iteration \(i\) takes \(\Theta(m)\) time since we examine each edge once.

Finding the shortest paths.
- Approach 1: Maintain a \textit{successor}\((i, v)\) that points to next node on cheapest \(v \rightarrow w\) path using at most \(i\) edges.
- Approach 2: Compute optimal costs \(M[i, v]\) and consider only edges with \(M[i, v] = M[i-1, w] + c_{vw}\).

\[\text{OPT}(i, v) = \text{OPT}(i-1, v) \quad \forall v \]
\[\text{OPT}(j, v) = \text{OPT}(i-1, v) \quad \forall j > i, \]
\[\text{OPT}(i+1, v) = \min \{ \text{OPT}(i, v), \min\{c_{vw} + \text{OPT}(i, w)\} \} \]
\[\text{OPT}(i, v) \]
Detecting negative cycles

Negative cycle detection problem. Given a digraph $G = (V, E)$, with edge weights c_{vw}, find a negative cycle (if one exists).
Detecting negative cycles: application

Currency conversion. Given n currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

\[
0.741 \times 1.366 \times .995 = 1.00714497
\]

Detecting negative cycles

Lemma 5. If $OPT(n, v) = OPT(n - 1, i)$ for all v, then no negative cycle can reach i.

Pf. Bellman-Ford algorithm.

Lemma 6. If $OPT(n, v) < OPT(n - 1, v)$ for some node v, then (any) cheapest path from v to i contains a cycle W. Moreover W is a negative cycle.

Pf. [by contradiction]
- Since $OPT(n, v) < OPT(n - 1, v)$, we know that shortest $v \rightarrow i$ path P has exactly n edges.
- By pigeonhole principle, P must contain a directed cycle W.
- Deleting W yields a $v \rightarrow i$ path with $< n$ edges $\Rightarrow W$ has negative cost.
Detecting negative cycles

Theorem 4. Can find a negative cycle in $\Theta(mn)$ time and $\Theta(n^2)$ space.

Pf.
- Add new node r and connect all nodes to r with 0-cost edge.
- G has a negative cycle iff G' has a negative cycle than can reach r.
- If $OPT(n, v) = OPT(n - 1, v)$ for all nodes v, then no negative cycles.
- If not, then extract directed cycle from path from v to r.
 (cycle cannot contain r since no edges leave r)

![Graph Diagram]