Longest Common Subsequence

Given: Two sequences \(x = x_1 \, x_2 \, ... \, x_n \) and \(y = y_1 \, y_2 \, ... \, y_m \), over some alphabet \(A \).

Find: Longest common subsequence \(z = z_1 \, ... \, z_k \) of \(x \) and \(y \).

Example:
\[
\begin{align*}
x &= TGACTA \\
y &= GTGCATG
\end{align*}
\]

LCS \(z = TGCA, \) or TGAT, or TGCT.

Step 1: Array of optimal numerical values for sub-problems
\[
A(i, j) = \begin{cases}
\text{length of LCS}(x_1 \ldots x_i, y_1 \ldots y_j) \\
\end{cases}
\]

Step 2: Recurrence
\[
A(i, 0) = A(0, j) = 0 \\
A(i, j) = \begin{cases}
A(i-1, j-1) + 1 & \text{if } x_i = y_j \\
\max \{ A(i-1, j), A(i, j-1) \} & \text{if } x_i \neq y_j \\
\end{cases}
\]

Step 3: Fill in the array

Step 4: Recover a solution (LCS) from the array by retracing.
Step 4: Recover a solution (LCS) from the array by retracing.

Longest Increasing Subsequence

Given: a sequence of integers \(a_1, a_2, \ldots, a_n \)

Find: a longest increasing subsequence

Example: 7, 3, 18, 4, 2, 6

has 3, 4, 6 as a LIS

Step 1: Array

\[
A(i) = \text{length of LIS of } a_1, \ldots, a_i
\]

Final answer = \(\max \{ A(i) \} \)

Step 2: Recurrence

\[
A(i) = 1 + \max \{ A(j) \mid 1 \leq j < i \text{ and } a_j < a_i \}
\]

Step 3: Fill in the array
Step 3: Fill in the array

\[\text{Time: } O(n^2) \]

Step 4: Use the array to find an actual LIS (by retracing).

Can be made \(O(n \log n) \) with clever data structure.

DP Summary

- "Bottom up" approach, usually using an array of optimal values for sub-problems.

- Efficient recurrence to fill in the array ("Principle of Optimality")

- Can recover not just the optimal values but actual solutions achieving optimal values (by tracing through the array).
- BFS / DFS: templates for graph algs
- Greedy algorithms: algo type
- Divide & Conquer: algo type
- Dynamic Programming: algo type

Next:
- Network Flow Algo: single algo

but can be used to solve many other problems via reductions!
Flow network

- Abstraction for material *flowing* through the edges.
- Digraph $G = (V, E)$ with source $s \in V$ and sink $t \in V$.
- Nonnegative integer capacity $c(e)$ for each $e \in E$.

Minimum cut problem

Def. A *st-cut (cut)* is a partition (A, B) of the vertices with $s \in A$ and $t \in B$.

Def. Its capacity is the sum of the capacities of the edges from A to B.

$$cap(A, B) = \sum_{e \text{ out of } A} c(e)$$
Minimum cut problem

Def. A \textit{st-cut (cut)} is a partition \((A, B)\) of the vertices with \(s \in A\) and \(t \in B\).

Def. Its \textit{capacity} is the sum of the capacities of the edges from \(A\) to \(B\).

\[
cap(A, B) = \sum_{e \text{ out of } A} c(e)
\]

capacity = 10 + 8 + 16 = 34

don’t count edges from \(B\) to \(A\)
Minimum cut problem

Def. A *st-cut* (cut) is a partition \((A, B)\) of the vertices with \(s \in A\) and \(t \in B\).

Def. Its **capacity** is the sum of the capacities of the edges from \(A\) to \(B\).

\[
\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)
\]

Min-cut problem. Find a cut of minimum capacity.

Maximum flow problem

Def. An *st-flow* (flow) \(f\) is a function that satisfies:

- For each \(e \in E\):
 \[0 \leq f(e) \leq c(e)\] [capacity]

- For each \(v \in V - \{s, t\}\):
 \[\sum_{e \text{ in } v} f(e) = \sum_{e \text{ out of } v} f(e)\] [flow conservation]

Maximum flow problem

Def. An *st*-flow (flow) f is a function that satisfies:

- For each $e \in E$: $0 \leq f(e) \leq c(e)$ [capacity]
- For each $v \in V - \{s, t\}$: $\sum_{e \text{ in } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [flow conservation]

Def. The value of a flow f is: $val(f) = \sum_{e \text{ out of } s} f(e)$.

![Flow Network Diagram]

$value = 5 + 10 + 10 = 25$
Maximum flow problem

Def. An *st-flow (flow)* f is a function that satisfies:

- For each $e \in E$: $0 \leq f(e) \leq c(e)$ [capacity]
- For each $v \in V - \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [flow conservation]

Def. The *value of a flow* f is: $\text{val}(f) = \sum_{e \text{ out of } s} f(e)$.

Max-flow problem. Find a flow of maximum value.

![Graph with flow values]
Towards a max-flow algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

![Diagram of network G with flow and capacity labels and a highlighted path from s to t with flow values]

Towards a max-flow algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

![Diagram of network G with flow and capacity labels and a highlighted path from s to t with flow values]
Towards a max-flow algorithm

Greedy algorithm.

- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an $s\rightarrow t$ path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.
Towards a max-flow algorithm

Greedy algorithm.

- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

network G

Towards a max-flow algorithm

Greedy algorithm.

- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

ending flow value = 16

network G
Towards a max-flow algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an $s \rightarrow t$ path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.
Residual graph

Original edge: \(e = (u, v) \in E. \)
- Flow \(f(e). \)
- Capacity \(c(e) \).

Residual edge.
- "Undo" flow sent.
- \(e = (u, v) \) and \(e^R = (v, u) \).
- Residual capacity:
 \[
 c_f(e) = \begin{cases}
 c(e) - f(e) & \text{if } e \in E \\
 f(e) & \text{if } e^R \in E
 \end{cases}
 \]

Residual graph: \(G_f = (V, E_f) \).
- Residual edges with positive residual capacity.
- \(E_f = \{ e : f(e) < c(e) \} \cup \{ e^R : f(e) > 0 \} \).
- Key property: \(f' \) is a flow in \(G_f \) iff \(f + f' \) is a flow in \(G \).

Augmenting path

Def. An augmenting path is a simple \(s \rightarrow t \) path \(P \) in the residual graph \(G_f \).

Def. The bottleneck capacity of an augmenting \(P \) is the minimum residual capacity of any edge in \(P \).

Key property. Let \(f \) be a flow and let \(P \) be an augmenting path in \(G_f \). Then \(f' \) is a flow and \(\text{val}(f') = \text{val}(f) + \text{bottleneck}(G_f, P) \).

AUGMENT \((f, c, P)\)

\[
\begin{align*}
 b & \leftarrow \text{bottleneck capacity of path } P. \\
 \text{FOREACH edge } e \in P & \\
 \text{IF } (e \in E) & f(e) \leftarrow f(e) + b. \\
 \text{ELSE} & f(e^R) \leftarrow f(e^R) - b. \\
 \text{RETURN } f.
\end{align*}
\]
(1) Is the new flow legal?
(2) Is the new flow better? Does value increase?

$$G^f$$

- Capacity constraints
 - Flow conservation

$$b = \min \text{res. cap.}$$
Cases:

\[G \]

\[\begin{aligned}
 &+b &+b \\
 &\downarrow &\downarrow \\
 &+b &-b \\
 &\downarrow &\downarrow \\
 &-b &-b \\
 &\downarrow &\downarrow \\
\end{aligned} \]

both forward edges

1 forward
1 backward

2 backward edges

(2) \[\text{val}(f') = d_1 + d_2 + d_3 \]

1st edge on s-t path in \(G' \)
is FORWARD edge
Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an augmenting path P in the residual graph G_f.
- Augment flow along path P.
- Repeat until you get stuck.

FORD-FULKERSON (G, s, t, c)

FOREACH edge $e \in E : f(e) ← 0$.

$G_f ←$ residual graph.

WHILE (there exists an augmenting path P in G_f)

$f ← AUGMENT(f, c, P)$.

Update G_f.

RETURN f.

Ford-Fulkerson algorithm demo

network G

```
value of flow
```

residual graph G_r

```
residual capacity
```

307 Lectures Summer 2017 Page 17
Ford-Fulkerson algorithm demo

network G

residual graph G_r
Ford-Fulkerson algorithm demo

network G

residual graph G_r

Ford-Fulkerson algorithm demo

network G

residual graph G_r
Ford-Fulkerson algorithm demo

network G

residual graph G_r
Ford-Fulkerson algorithm demo

network G

residual graph G_r

Ford-Fulkerson algorithm demo

network G

residual graph G_r
Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then, the net flow across (A, B) equals the value of f.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \nu(f)$$

net flow across cut \[= 5 + 10 + 10 = 25\]

| Value of flow \[= 25\] |
Relationship between flows and cuts

Flow value lemma. Let \(f \) be any flow and let \((A, B)\) be any cut. Then, the net flow across \((A, B)\) equals the value of \(f \).

\[
\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \nu(f)
\]

net flow across cut \(= 10 + 5 + 10 = 25 \)

Relationship between flows and cuts

Flow value lemma. Let \(f \) be any flow and let \((A, B)\) be any cut. Then, the net flow across \((A, B)\) equals the value of \(f \).

\[
\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \nu(f)
\]

net flow across cut \(= (10 + 10 + 5 + 10 + 0 + 0) - (5 + 5 + 0 + 0) = 25 \)
Relationship between flows and cuts

Flow value lemma. Let \(f \) be any flow and let \((A, B)\) be any cut. Then, the net flow across \((A, B)\) equals the value of \(f \).

\[
\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = \nu(f)
\]

Pf.

\[
\nu(f) = \sum_{e \text{ out of } s} f(e)
\]

by flow conservation, all terms except \(\nu = s \) are 0

\[
= \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)
\]

\[
= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).
\]

\[\blacksquare\]
Relationship between flows and cuts

Weak duality. Let f be any flow and (A, B) be any cut. Then, $v(f) \leq \text{cap}(A, B)$.

Pf.

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \\
\leq \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} c(e) \\
= \text{cap}(A, B) \quad \blacksquare
\]

value of flow = 27 \quad \leq \quad \text{capacity of cut} = 30

Max-flow min-cut theorem

Augmenting path theorem. A flow f is a max-flow iff no augmenting paths.

Max-flow min-cut theorem. Value of the max-flow = capacity of min-cut.

Pf. The following three conditions are equivalent for any flow f:

i. There exists a cut (A, B) such that $\text{cap}(A, B) = v(f)$.

ii. f is a max-flow.

iii. There is no augmenting path with respect to f.

\[i \Rightarrow ii \]

\[\begin{align*}
\text{Suppose that } (A, B) \text{ is a cut such that } & \text{cap}(A, B) = v(f). \\
\text{Then, for any flow } f' & \quad v(f') \leq \text{cap}(A, B) = v(f). \\
\text{Thus, } & f \text{ is a max-flow.} \\
\end{align*}\]
Max-flow min-cut theorem

Augmenting path theorem. A flow \(f \) is a max-flow iff no augmenting paths.

Max-flow min-cut theorem. Value of the max-flow = capacity of min-cut.

Pf. The following three conditions are equivalent for any flow \(f \):

i. There exists a cut \((A, B)\) such that \(\text{cap}(A, B) = \text{val}(f) \).

ii. \(f \) is a max-flow.

iii. There is no augmenting path with respect to \(f \).

[\(\text{ii} \iff \text{iii} \)] We prove contrapositive: \(\sim \text{iii} \iff \sim \text{ii} \).

- Suppose that there is an augmenting path with respect to \(f \).
- Can improve flow \(f \) by sending flow along this path.
- Thus, \(f \) is not a max-flow.

34
Max-flow min-cut theorem

\[i \iff i \]

- Let \(f \) be a flow with no augmenting paths.
- Let \(A \) be set of nodes reachable from \(s \) in residual graph \(G_f \).
- By definition of cut \(A, s \in A \).
- By definition of flow \(f, t \notin A \).

\[
\begin{align*}
\nu(f) &= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \\
&= \sum_{e \text{ out of } A} c(e) \\
&= \text{cap}(A, B)
\end{align*}
\]

original network \(G \)

edge \(e = (v, w) \) with \(v \in B, w \in A \) must have \(f(e) = 0 \)

edge \(e = (v, w) \) with \(v \in A, w \in B \) must have \(f(e) = c(e) \)